首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitat-forming macroalgae play a central role in the ecology of temperate reefs worldwide but there exists a critical lack of knowledge about important processes such as dispersal and gene flow. Understanding dispersal and gene flow of habitat-forming seaweeds is particularly pertinent given that loss of habitat-forming algae is an increasingly prevalent problem worldwide. Here, we develop 10 microsatellite markers for the monotypic Phyllospora comosa, an important habitat-forming macroalga that has undergone massive declines on urbanised coastlines of Sydney, Australia. We characterise population genetic diversity and structure and estimate levels of dispersal and gene flow between the geographically isolated northern and southern populations in this subtidal macroalga.  相似文献   

2.
Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.  相似文献   

3.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

4.
Degradation and loss of natural habitats due to human activities is a main cause of global biodiversity loss. In temperate systems, seaweeds are a main habitat former and support extremely diverse communities, including many economically important species. Coastal urbanisation is, however, causing significant declines of key habitat-forming seaweeds. To develop successful management strategies such as seaweed habitat restoration, it is necessary to first determine what additional ecosystem values are likely to be added through restoration and to provide baseline data against which goals can be established and success can be measured. The habitat-forming fucoid Phyllospora comosa was once common on shallow subtidal reefs around Sydney, Australia’s largest city, but disappeared in the 1980s, coincident with heavy sewage outfall discharges. To provide the baseline data necessary for restoring and managing Phyllospora in areas from where it has disappeared, we quantified the community composition and abundance of fish and large invertebrates (abalone and sea urchins) in healthy Phyllospora habitats and compared them to those in Ecklonia radiata (the other major habitat-forming kelp in the region) as well as other common shallow subtidal habitats. Fish assemblage structure was similar between Phyllospora vs Ecklonia beds, but Phyllospora supported much greater numbers of abalone and urchins than any other habitat. This suggests that, in terms of some components of the biodiversity it supports, Phyllospora is functionally unique and not a redundant species. Restoring this seaweed will, therefore, also contribute to biodiversity rehabilitation by restoring unique faunal assemblages that are supported by Phyllospora, including economically important species.  相似文献   

5.
Ungava Bay is ice covered 6–7 months of the year and evidence of ice scouring of seaweeds is extensive in the intertidal and shallow subtidal. Maximum tidal amplitudes of 16 m, among the highest in Canadian waters, compound this impact. Despite this level of annual perturbation, very extensive and dense beds of fucoids in the intertidal and laminarians in the subtidal are common on the western shores of Ungava Bay. Ground surveys of 24 intertidal stations combined with satellite images delineated 82,000 tons standing crop of Fucus vesiculosus and Fucus evanescens in Payne Bay, of which 36,000 tons were considered harvestable. Subtidally, kelp cover reached peak biomass at 5–10 m consisting of three primary species, Saccharina longicruris, Laminaria digitata, and Laminaria solidungula. In the area of Payne Bay, kelp beds of 100 ha were common, averaging 9–12 kg m−2 wet weight. The productivity of brown algae at these latitudes has been assumed to be low relative to southern latitudes. Direct measurement of lineal growth indicates productivity is intermediate between arctic and temperate populations. The potential for medium level industrial harvest exists under conservative management strategies within the constraints of subarctic logistics.  相似文献   

6.
The Japanese kelp Undaria pinnatifida was found on 7th September 2005 in Ría Deseado (Santa Cruz, Argentina). This invasive algae was registered from the lower intertidal to the upper levels of the subtidal zone. The sporophytes were fixed to slabs, gravel and rocks of variable sizes and were also present as epibionts of tunicates. The sporophytes total length ranged between 3 and 88 cm, with a mean of 28.75 cm in the intertidal and 38.3 cm in the subtidal. The density and biomass increased from the intertidal to the subtidal. The kelp population showed a higher number of small immature individuals in the intertidal than␣subtidal where the organisms were bigger and with more individual biomass. This first record of U. pinnatifida in Southern Patagonia extends its southern distribution limit in Argentina, showing progressive expansion in the southwestern Atlantic. More surveys must be conducted to understand the evolution of U. pinnatifida invasion and its impact on the native benthic community.  相似文献   

7.
Kelp forests dominated by species of Laminariales are globally recognized as key habitats on subtidal temperate rocky reefs. Forests characterized by fucalean seaweed, in contrast, receive relatively less attention despite being abundant, ubiquitous, and ecologically important. Here, we review information on subtidal fucalean taxa of Australia's Great Southern Reef, with a focus on the three most abundant and widely distributed genera (Phyllospora, Scytothalia, and Sargassum) to reveal the functionally unique role of fucoids in temperate reef ecology. Fucalean species span the entire temperate coastline of Australia (~71,000 km2) and play an important role in supporting subtidal temperate biodiversity and economic values on rocky reefs as well as in adjacent habitats. Climatic and anthropogenic stressors have precipitated significant range retractions and declines in many fucoids, with critical implications for associated assemblages. Such losses are persistent and unlikely to be reversed naturally due to the life history of these species and colonization of competitors and grazers following loss. Active restoration is proving successful in bringing back some fucoid species (Phyllospora comosa) lost from urban shores and will complement other passive and active forms of conservation. Fucalean forests play a unique role on subtidal temperate reefs globally, especially in Australia, but are comparatively understudied. Addressing this knowledge gap will be critical for understanding, predicting, and mitigating extant and future loss of these underwater forests and the valuable ecosystem services they support.  相似文献   

8.
Kelp forest ecosystems dominate 150,000 km of global temperate coastline, rivalling the coastal occurrence of coral reefs. Despite the astounding biological diversity and productive ecological communities associated with kelp forests, patterns of species richness and composition are difficult to monitor and compare. Crustose coralline algae are a critically important substrate for propagule settlement for a range of kelp forest species. Coralline‐covered cobbles are home to hundreds of species of benthic animals and algae and form a replicable unit for ecological assays. Here, we use DNA metabarcoding of bulk DNA extracts sampled from cobbles to explore patterns of species diversity in kelp forests of the central California coast. The data from 97 cobbles within kelp forest ecosystems at three sites in Central California show the presence of 752 molecular operational taxonomic units (MOTUs) and 53 MOTUs assigned up to the species level with >95% similarity to current databases. We are able to detect spatial patterns of important management targets such as abalone recruits, and localized abundance of sea stars in 2012. Comparison of classic ecological surveys of these sites reveals large differences in species targets for these two approaches. In order to make such comparisons more quantitative, we use Presence/Absence Metabarcoding, using the fraction of replicate cobbles showing a species as a measure of its local abundance. This approach provides a fast and repeatable survey method that can be applied for biodiversity assessments across systems to shed light on the impact of different ecological disturbances and the role played by marine protected areas.  相似文献   

9.
Brown algae (Phaeophyceae) are habitat-forming species in coastal ecosystems and include kelp forests and seaweed beds that support a wide diversity of marine life. Host-associated microbial communities are an integral part of phaeophyte biology, and whereas the bacterial microbial partners have received considerable attention, the microbial eukaryotes associated with brown algae have hardly been studied. Here, we used broadly targeted “pan-eukaryotic” primers (metabarcoding) to investigate brown algal-associated eukaryotes (the eukaryome). Using this approach, we aimed to investigate the eukaryome of seven large brown algae that are important and common species in coastal ecosystems. We also aimed to assess whether these macroalgae harbor novel eukaryotic diversity and to ascribe putative functional roles to the host-associated eukaryome based on taxonomic affiliation and phylogenetic placement. We detected a significant diversity of microeukaryotic and algal lineages associated with the brown algal species investigated. The operational taxonomic units (OTUs) were taxonomically assigned to 10 of the eukaryotic major supergroups, including taxonomic groups known to be associated with seaweeds as epibionts, endobionts, parasites, and commensals. Additionally, we revealed previously unrecorded sequence types, including novel phaeophyte OTUs, particularly in the Fucus spp. samples, that may represent fucoid genomic variants, sequencing artifacts, or undescribed epi-/endophytes. Our results provide baseline data and technical insights that will be useful for more comprehensive seaweed eukaryome studies investigating the evidently lineage-rich and functionally diverse symbionts of brown algae.  相似文献   

10.
Assemblages of non-cryptic, substrate-oriented species of fish were compared on a series of reefs in Southern California, USA. Reefs were grouped according to algal cover: dense beds of giant kelp (Macrocystis pyrifera) with turf understorey; sparse beds of giant kelp with foliose algae understorey: foliose algae < 1 m in height; and open barrens. Despite affinities to particular algal substrates by many individual species, we detected no differences in fish species richness and only weak differences in species composition among reefs of different habitat types. Planktivores and species that consume macro-invertebrates were less likely to occur on reefs that supported giant kelp; the frequencies of occurrence of three other trophic groups (piscivores, herbivores and micro-carnivores) were unaffected by giant kelp. Algal composition on reefs in Southern California is temporally highly dynamic. Changes in macro-algal composition of reefs influenced population dynamics of two fish species (black surfperch and striped surfperch) examined. Overall, the weak spatial variation in fish assemblages on reefs in Southern California appears to result from relatively unspecialized ecological requirements of many species combined with temporal changes in algal structure on reefs that are rapid relative to generation times of the fish. We hypothesize that the degree of spatial differentiation in assemblages of substrate-associated species of fish may be inversely related to the temporal constancy of biogenic reef structure.  相似文献   

11.
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distribution of species with an associated replacement of cold-water species by warm-water species. Such predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in species composition and abundance relative to seawater temperature. Before-After-Control-Impact (BACI) analyses of the effects of a large thermal discharge shows that an induced 3.4 deg. C rise in seawater temperature over 10 years along 2 km of rocky coastline resulted in significant community-wide changes in 150 species of algae and invertebrates relative to controls. Contrary to predictions from biogeographic models, there was no trend towards warm-water species with southern geographic affinities replacing cold-species with northern affinities. Instead, communities were greatly altered in apparently cascading responses to changes in abundance of several habitat-forming taxa, particularly subtidal kelps (e.g. Pterygophora californica ) and intertidal foliose red algae (e.g. Mazzaella flaccida ). Many temperature sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The results indicate that the responses of temperate reef communities to ocean warming can be strongly coupled to direct effects on habitat-forming taxa and indirect effects operating through ecological interactions. Given our understanding of temperate reef ecology and its local variability, the results also suggest that accurate predictions of the effects of global ocean warming will be difficult to make.  相似文献   

12.
Human activities, including overfishing and species introductions, have had a dramatic impact on benthic communities in the Gulf of Maine within the past two decades. Prior to the 1970s, the climax community in the shallow subtidal was composed of Laminaria spp. kelp beds with an understory of arborescent red algae. In the 1980s, a population explosion of the green sea urchin, Strongylocentrotus droebachiensis, created an alternate community state, urchin barrens. Recently, a new community has been observed in former urchin barrens and kelp beds. This assemblage is principally composed of the introduced species: Codium fragile subsp. tomentosoides (green alga), Membranipora membranacea (bryozoan), Diplosoma listerianum (tunicate), Bonnemaisonia hamifera (red alga) and the opportunistic species Mytilus edulis (mussel) and Desmarestia aculeata (brown alga). In addition to changes in relative abundance, many of these species have greatly expanded their distribution and habitat selection. A model detailing mechanisms for the transition of the traditional kelp bed and urchin barren communities to others is presented and implications for this new community are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Climate‐mediated changes to biotic interactions have the potential to fundamentally alter global ecosystems. However, the capacity for novel interactions to drive or maintain transitions in ecosystem states remains unresolved. We examined temperate reefs that recently underwent complete seaweed canopy loss and tested whether a concurrent increase in tropical herbivores could be maintaining the current canopy‐free state. Turf‐grazing herbivorous fishes increased in biomass and diversity, and displayed feeding rates comparable to global coral reefs. Canopy‐browsing herbivores displayed high (~ 10 000 g 100 m?2) and stable biomass between 2006 and 2013. Tropical browsers had the highest abundance in 2013 and displayed feeding rates approximately three times higher than previously observed on coral reefs. These observations suggest that tropical herbivores are maintaining previously kelp‐dominated temperate reefs in an alternate canopy‐free state by grazing turfs and preventing kelp reestablishment. This remarkable ecosystem highlights the sensitivity of biotic interactions and ecosystem stability to warming and extreme disturbance events.  相似文献   

14.
Synopsis Herbivory by wide-ranging fishes is common over tropical reefs, but rare in temperate latitudes where the effects of herbivorous fishes are thought to be minimal. Along the west coast of North America, herbivory by fishes on nearshore reefs is largely restricted to a few members of the Kyphosidae, distributed south of Pt. Conception. This paper presents information on natural diets and results from feeding choice experiments for two abundant kyphosids from intertidal habitats in San Diego, California —Girella nigricans andHermosilla azurea, and similar data for the lined shore crab,Pachygrapsus crassipes, which also forages over intertidal reefs. These results are compared with the availability of algae in intertidal habitats measured during summer and winter, on both disturbed and undisturbed habitats. The diets of juveniles ofG. nigricans andH. azurea collected from nearshore habitats were dominated by animal prey (mainly amphipods), but adults of these fishes, andP. crassipes, consumed algae nearly exclusively, with 26, 10, and 14 taxa of algae identified fromG. nigricans, H. azurea, andP. crassipes, respectively. Algae with sheet-like morphologies (e.g.Ulva sp.,Enteromorpha sp., members of the Delesseriaceae) were the principal algae in the diets of the fishes, and calcareous algae (e.g.Corallina sp.,Lithothrix aspergillum) and sheet-like algae (Enteromorpha sp.) comprised the greatest identifiable portion of the shore crab's diet. Feeding choice experiments indicated that the fishes preferred filamentous algae (e.g.Centroceras clavulatum, Polysiphonia sp.,Chondria californica) and sheet-like algae (e.g.Enteromorpha sp.,Ulva sp.,Cryptopleura crispa) over other algal morphologies, whereas the shore crab chose jointed calcareous algae (e.g.Lithothrix aspergillum, Corallina vancouveriensis, Jania sp.) most frequently. The diets and preferences for algae by the fishes were generally most similar to the assemblage of algae available in early successional (disturbed) habitats during summer when sheet-like and filamentous algae are abundant. The shore crab exhibited the opposite trend with a diet more similar to late successional (undisturbed) habitats.  相似文献   

15.
Loss of habitat‐forming algae is increasingly prevalent in temperate marine ecosystems. Here, we document absence of an important habitat‐forming macroalga, Phyllospora comosa (Labill.) C. Agardh, along an urbanized coast in New South Wales (NSW), Australia. Dense Phyllospora canopies were common on shallow sublittoral reefs north and south of Sydney. In contrast, we did not find a single individual along ~70 km of rocky coastline in the Sydney metropolitan region, despite historical evidence to suggest that it was very common half a century ago. Recolonization of this important habitat‐forming alga has not occurred on Sydney reefs despite improved water quality, protection of its habitat, and frequent long‐distance dispersal of Phyllospora wrack. While there are obvious limitations, historical information can be useful for identifying potential shifts in community structure to increase our understanding of contemporary ecological patterns.  相似文献   

16.
Ecosystem engineers are species that influence the abiotic and biotic environment around them and may assist the restoration of associated species, including other habitat‐forming species. We deployed an array of 28 artificial reefs with transplanted Ecklonia radiata, the dominant canopy‐forming kelp species across southern Australia, to investigate how the patch size and density of E. radiata influenced the establishment of the associated communities of plants and animals. Many of the reefs were rapidly colonized by Ostrea angasi, a critically depleted reef‐forming oyster. Over the 24‐month deployment of the reefs, thick oyster mats formed across the entire surface of many of the reefs with estimated biomass densities exceeding 5 kg of live oysters/m2; however, oyster density was dependent on E. radiata patch size and density. Increasing patch size and the presence of kelp resulted in significantly higher densities of oysters 5 months after the reefs were deployed and at the end of the experiment, where oysters were approximately three times more numerous on reefs with kelp compared to those without kelp. E. radiata appeared to facilitate the establishment of O. angasi largely through its capacity to reduce benthic light and thus suppress competition from turfing algae. These results may inform the development of novel approaches to tackle recruitment bottlenecks affecting the restoration of O. angasi reefs.  相似文献   

17.
Levenbach S 《Oecologia》2009,159(1):181-190
Recent studies have emphasized the role of positive interactions in ecological communities, but few have addressed how positive interactions are mediated by abiotic stress and biotic interactions. Here, I investigate the effect of a facilitator species on the abundance of macroalgae over a gradient of herbivory. Grazing by sea urchins can be intense on temperate reefs along the California coast, with benthic macroalgae growing exclusively in physical refuges and interspersed within colonies of the strawberry anemone, Corynactis californica. Field experiments indicated that the net effect of C. californica on turf algae was strongly nonlinear over a gradient in density of sea urchins. At low intensities of urchin grazing, the anemone and macroalgae competed for space, with algae capable of overgrowing C. californica. At intermediate grazing intensities, C. californica provided a refuge for turf algae but not for juvenile kelp. Neither turf algae nor kelp benefited from the presence of C. californica at the highest levels of grazing intensity, as sea urchins consumed nearly all macroalgae. The hump-shaped effect observed for C. californica contrasts with the prevailing view in ecological theory that positive interactions are more common in harsh environmental conditions. The results reported here qualify this view and underscore the need to evaluate positive interactions over a range of abiotic stress and consumer pressure.  相似文献   

18.
It has been hypothesized that the high diversity of giant kelp forests is due primarily to the provision of energy and habitat by the giant kelp (Macrocystis pyrifera). In this article, I use a 19-year-long kelp forest-monitoring data set from the Channel Islands National Park (a) to identify associations between subtidal species and forested or deforested habitats, (b) to generate an idealized food web for Southern California giant kelp forests in order to identify the primary conduits of energy flow through the system, and (c) to determine changes in the diversity and complexity of this food web due to localized giant kelp deforestation. A total of 275 common species were observed in the park between 1982 and 2000, of which 36% occurred significantly more often in kelp-forested areas than in deforested areas (that is, sea urchin barrens); 25 species were found exclusively in forested areas. Most of these associations were clearly identified as trophic and/or structural associations with giant kelp itself. The producer level of the food web was diverse, although giant kelp apparently represents the greatest single source of fixed carbon through either direct grazing or the production of phytodetritus. Primary, secondary and tertiary consumer levels were also represented by numerous species, and generalist consumers were common. With deforestation, the source of primary production shifts from primarily kelps to ephemeral microalgae, macroalgae, and phytoplankton. These results support the reliance of giant kelp forest food-web structure and diversity on the presence of the forest itself.  相似文献   

19.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

20.
Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12‐year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997–1998 and 2002 El Niño events and was compromised 2–4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号