首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Glucose, either uniformly labelled with14C, or specificallylabelled in the I, 2, or 6 position, was added to C. vulgaris.Radio-active carbon dioxide was produced initially ten timesfaster from glucose-I-14C than from glucose-6-14C. This differencewas found with carbohydrate-starved cultures, exponentiallygrowing cultures, and cultures assimilating ammonia or nitraterapidly. A similar difference was also found with C. pyrenoidosaand Ankistrodesmus. 37 per cent. of the 14C added as glucose-1-14Cto exponentially growing cells was recovered as carbon dioxidebut generally the recovery was less than this. Only 5 per cent.of 14C added as glucose-6-14C was recovered as carbon dioxide.The specific activity of the carbon dioxide produced was considerablylower than that of the carbon in the added glucose.  相似文献   

2.
The respiratory losses and the pattern of carbon supply froma leaf of unicuim barley were examined during a complete diurnalperiod using a steady state 14C-labelling technique. After a delay of c. 1 h a portion of the 14C exported from acontinuously assimilating leaf was lost in respiration in thelight. This respiratory loss amounted to c. 20% of the total14C fixed. A further 28% of the total 14C fixed was respiredduring the dark period. In the light, carbon was fixed at a rate of c. 8·9 mgC dm–2 h–1 and exported from the leaf at c. 5·3mg C dm–2 h–1. Dark export averaged c. 31% of theday-time rate. Carbohydrate was stored in the leaf during the day and was almostcompletely remobilized during the dark. Sucrose, the major reservecarbohydrate, was exported first whilst the starch level remainedconstant. After some 9 h of darkness, sucrose declined to alow level and starch remobilization began.  相似文献   

3.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

4.
Time-series of 14C uptake and fluorescence yield (i.e., thefluorescence enhancement after addition of the photosyntheticinhibitor DCMU) were measured in Chorella vulgaris at variouslight intensities. Adaptation and recovery processes after alterationof the light intensity were also studied. At a constant lightintensity, both the rate of 14C uptake and the fluorescenceyield decreased with time. Comparison of time-series data of14C uptake at different light intensities showed that this phenomenonconsisted of several processes (i.e., at low light intensitiessmall changes in uptake rates were mainly due to photoadaptation,while at higher light intensities relatively larger changesoccurred, as result of photoinhibition). Transfer of an algalsample to low light intensities after a period of exposure toinhibiting light intensities resulted in an exponential recoveryof the 14C uptake rate with time, coupled with an exponentialrecovery of the fluorescence yield. A mechanistic model is presented,which describes the algal 14C uptake rate as a function of timeand light intensity. The model includes adaptation, inhibitionand recovery. Six parameters, characterising the algal suspension,have to be estimated from the results of one P versus I curveand one time-series 14C uptake, which includes a period of recovery.Using these parameters the model can predict the time-courseof 14C uptake at every constant light intensity, as well aswhen the light intensity is changed during the experiment. Whenapplied to a culture of C. vulgaris, the theoretical valuesclosely approach the actual measurements. The resemblance betweenthe measured time-series of fluorescence yield and the rateof 14C uptake indicates, that the changes in the rate of 14Cuptake are due to changes in the photosynthetic apparatus, ratherthan to changes of diffusion of 14C into the cell.  相似文献   

5.
The biosynthetic pathway from D-glucose to L-(+)-tartaric acid(TA) in detached leaves of the bean, Phaseolus vulgaris L.,was studied in three cultivars, two of which were known to containTA and one of which lacked TA, with the aid of several putativeradiolabeled intermediates, namely D-[l-14C]glucose, D-[6-14C]glucose,D-[U-14C]glucose, D-[U-14C]gluconate, L-[U-14C]-ascorbic acid,L-[l-l4C]idonate, D-xylo-5-[U-14C]hexulosonate, D-xylo-5-[l-14C]hexulosonate,D-xylo-5-[6-l4C]hexulosonate and L-[U-l4C]threonate. D-[U-14C]Glucoseand D-[U-l4C]gluconate were converted to TA with low isotopicyield but this yield was further reduced when leaf tissues weresupplied with unlabeled D-gluconate or D-xylo-5-hexulosonate.D-xylo-5-[U-14C]Hexulosonate and D-xylo-5-[l-14C]hexulosonatewere good precursors of TA. D-xylo-5-[6-14C]Hexulosonate didnot furnish 14C to TA. Addition of a metabolic product of D-xylo-5-hexulosonate(which was labeled by D-xylo-5-[l-14C]hexulosonate but not byD-xylo-5-[6-14C]hexulosonate) to leaves labeled with D-xylo-5-[l-14C]hexulosonatedoubled the incorporation of 14C into TA. L-[U-14C]Ascorbicacid, L-[l-14C]idonate and L-[U-14C]threonate failed to producelabeled TA. A metabolic scheme to accommodate these observationsis presented. (Received October 21, 1988; Accepted March 29, 1989)  相似文献   

6.
Pretreatment of 2?0 mm segments of etiolated zucchini (Cucurbitapepo L.) hypocotyl with cycloheximide (CH) or 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide(MDMP) eliminated the stimulation by N-1-naphthylphthalamicacid (NPA) of net uptake of [1-14C]indol-3yl-acetic acid ([1-14C]IAA),but had relatively little effect on the net uptake of IAA inthe absence of NPA. The efflux of [1-14C]IAA from preloadedsegments was not substantially affected by inhibitor pretreatmentin the absence of NPA, but CH pretreatment significantly inhibitedthe reduction of efflux caused by NPA. Pretreatment with CHor MDMP did not affect net uptake by segments of the pH probe[2-14C]5,5-dimethyl-oxazolidine-2,4-dione ([2-14C]DMO), or thenet uptake of [14C]-labelled 3-O-methylglucose ([14C]3-0-MeGlu),suggesting that neither inhibitor affected intracellular pHor the general function of proton symporters in the plasma membrane.Both compounds reduced the incorporation of label from [35S]methionineinto trichloroacetic acid (TCA)-insoluble fractions of zucchinitissue, confirming their inhibitory effect on protein synthesis. The steady-state association of [3H]IAA with microsomal vesiclesprepared from zucchini hypocotyl tissue was enhanced by theinclusion of NPA in the uptake medium. The stimulation by NPAof [3H]IAA association with microsomes was substantially reducedwhen the tissue was pretreated with CH. However, CH pretreatmentdid not affect the level of high affinity NPA binding to themembranes indicating that treatments did not result in lossof NPA receptors. It is suggested that the auxin transport site on the effluxcarrier system and the receptor site for NPA may reside on separateproteins linked by a third, rapidly turned-over, transducingprotein. Key words: Auxin carriers, auxin efflux, Cucurbita pepo, phytotropin receptors  相似文献   

7.
[Methylene-14C]-3-indolylmethylglucosinolate (14C-IMG) was convertedin vitro to [methylene-14Cl-3-indolylacetonitrile (14C-IAN)by myrosinase over a pH range of 4.0-6.0 and this conversionwas enhanced by ferrous ions. Other products of the reactionincluded 3-indolylmethanol, 3, 3'-diindolylmethane and ascorbigenA. Trace amounts of 14C-IAN were produced non-enzymically from14C-IMG in the presence of ferrous ion over a similar pH range.Furthermore, swede tissues (Brassica napus cv. Danestone) infectedwith Plasmodiophora brassicae Woron. could convert 14C-IMG to14C-IAN. These results were consistent with the hypothesis thatthe overgrowth symptoms of the clubroot disease are caused bythe conversion of IMG to the auxin precursor IAN.  相似文献   

8.
Changes in growth and yield parameters, and 14CO2 and (U-14C)sucrose incorporation into the primary metabolic pool, and essentialoil have been investigated under Mn-deficiency and subsequentrecovery in Mentha piperita, grown in solution culture. UnderMn-deficiency, CO2 exchange rate, total chlorophyll, total assimilatoryarea, plant dry weight, and essential oil yield were significantlyreduced, whereas chlorophyll a/b ratio, leaf area ratio andleaf stem ratio significantly increased. In leaves of Mn-deficientplants, 14CO2 incorporation into the primary metabolic pool(ethanol-soluble and -insoluble) and essential oil were significantlylower, whereas (U-14C) sucrose incorporation into these componentswas significantly higher as compared to the control. Among theprimary metabolites, the label was maximum in sugars, followedby organic acids and amino acids. A higher label in these metaboliteswas, in general, observed in stems of Mn-deficient plants ascompared to the control. Mn-deficient plants supplied with completenutrient medium for 3 weeks exhibited partial recovery in growthand yield parameters, and essential oil biogenesis. Thus, underMn-deficiency and subsequent recovery, the levels of primaryphotosynthetic metabolites and their partitioning between leafand stem significantly influence essential oil biogenesis. Key words: Mentha piperita, Mn-stress, 14CO2 and [U-14C] sucrose incorporation, oil accumulation, primary photosynthetic metabolites  相似文献   

9.
5-Keto-D-[1-14C]gluconic acid, the most effective precursorof L(+)tartaric acid among all labeled compounds which haveever been tested in grapes, was found to be a good precursorof L(+)tartaric acid in a species of Pelargonium. The synthesisof labeled L(+)tartaric acid from D-[1-14C]glucose in Pelargoniumwas remarkably depressed when a 0.5% solution of D-gluconateor 5-keto-D-gluconate was administered continuously to leavestogether with D-[1-14C]glucose. Our results provide strong evidence that D-[1-14C]glucose ismetabolized in Pelargonium to give labeled L(+)tartaric acidvia (probably D-gluconic acid and) 5-keto-D-gluconic acid withoutpassing through L-ascorbic acid. Labeled L-idonic acid was found in young leaves of Pelargoniumwhich had been labeled with L-[U-14C]ascorbic acid. The synthesisof the labeled L-idonic acid increased when a 0.1% solutionof L-threonate was administered continuously to leaves togetherwith L-[U-14C]ascorbic acid. Specifically labeled compounds, recognized as the members ofthe synthetic pathway for L(+)tartaric acid from L-ascorbicacid via L-idonic acid in grapes, were administered to youngleaves of Pelargonium. Each compound (2-keto-L-[U-14C]idonicacid, L-[U-14C]idonic acid, 5-keto-D-[1-14C]gluconic acid and5-keto-D-[6-14C]gluconic acid) was partly metabolized, as ingrapes. The metabolic pathway starting from L-ascorbic acidto L(+)tartaric acid via L-idonic acid, however, did not actuallycontribute to the synthesis of L(+)tartaric acid in Pelargoniumprobably because the activity of each metabolic step was muchlower than that observed in grapes. (Received May 28, 1984; Accepted July 30, 1984)  相似文献   

10.
The polar transport of indol-3yl-acetic acid (IAA-2-14C) instem explants and decapitated shoots of tumour-prone Nicotianahybrids (2n, 3n, and 4n) was compared with that in the normal,non-tumorous parent species N. glauca and N. langsdorffii. Thetotal uptake of the auxin from donor blocks was greatest inthe hybrids and N. glauca. The velocity of the basipetal movementof IAA-14C was the same in all species tested, i.e. 8 mm/h.The transport capacity for the hormone, however, was decreasedin the three tumour-prone hybrids. Gas chromatography showedthat between 70 and 90 per cent of the transported auxin waspresent in the form of IAA, between 10 and 30 per cent in theform of indol-3yl-aldehyde (IAld). The basipetal transport exceeded the acropetal transport inyoung (third) intemodes of all plants studied, whereas in olderstem segments (tenth intenodes) the reverse was found. The polarity of auxin transport was less well expressed in thetumorous hybrids. Blocking the active transport by pre-treatment of stem cuttingswith 2,4-dinitrophenol (2,4-DNP) caused a drastic reductionin the polar IAA-14C movement; in all plants tested the auxintransport was reduced to the same low level. The accumulation of auxin at the base of cuttings was higherin N. glauca and the 2n hybrid than in N. langsdorffii, i.e.about seven times higher after 1-h and three times higher after12-h transport experiments. The release of 14C from the cuttinginto an agar receiver block, however, was markedly reduced inthe 2n hybrid, whereas in N. glauca the labelled substancesmoved more freely into the receiver blocks. Differences in the capacity for the accumulation and the releaseof IAA-14C in hybrid and N. glauca stem tissues were studiedusing decapitated greenhouse plants wounded by incision abovethe fourth internode. Accumulation of the auxin occurred onlyabove the wound-cut in hybrid plants. This observation is consistentwith the view that tumour formation on hybrid stems occurs atsites of wounding. Our data suggest an elevated auxin levelto be present during tumour initiation at these sites. These results on polar transport and accumulation of IAA-14Cin tumorous Nicotiana plants together with our previous dataon various endogenous auxins suggest that the induction of neoplasticgrowth in tobacco plants is correlated with increased auxinlevels and an accumulation of the hormone at sites of wounding.  相似文献   

11.
Twenty-four hours after leaf 3 of a plant of Lolium multiflorumLam, was supplied with a droplet of 14C-urea and the plant enclosedin a polyethylene bag with an untreated plant, there were significantamounts of radiocarbon recovered from the untreated plant. Theleaf treated with 14C-urea was the major source of 14C leakagebut significant losses were also recorded from other parts ofthe plant. Reducing the humidity within the bag decreased theamount of 14CO2 which escaped. Losses of radiocarbon from CO2-treated plants were very low compared with those from urea-treatedplants but the pattern of assimilate distribution within thetwo types of plants was very similar. The possible causes ofthese effects are considered and the usefulness of 14C-ureaas a source of 14CO2 discussed.  相似文献   

12.
A launch, suspension and recovery technique for oceanic, insitu, 14C productivity measurements is described. Ship's timefor deployment of 125 ml incubation bottles at several depthsdown to 100 m is approximately 10 minutes but another half houris required for water sampling and laboratory manipulations.Relocation from up to 9 nautical miles (16.7 km) is by inexpensiveVHF telemetry transmitters and recovery is by grappling fromthe ship. The method was tested in the Scotia Sea, The Antarctic,during the cruise John Biscoe 2 (1980). It was found feasibleto launch experiments in winds of up to 30 knots (15.4 m s–1)and recover in a wind of 40 knots (20.6 m s) on occasion.Eleven experiments were performed in 15 days.  相似文献   

13.
When either trans-cinnamic acid-2-14C or quinic acid-G-3H wasadministered to sweet potato root discs, each compound was incorporatedinto chlorogenic acid. Hydrolysis analysis revealed that trans-cinnamicacid-2-14C and quinic acid-G-3H were selectively incorporatedinto the aromatic and non-aromatic moieties of chlorogenic acid,respectively. Quinic acid-G-3H was considered a more efficient precursor thantrans-cinnamic acid-2-14C, based on data of dilution values,incorporation percents and pool sizes in the tissue. No conjugatesof trans-cinnamic acid and quinic acid were detected in discsadministered trans-cinnamic acid-2-14C or quinic acid-G-3H.From these experimental results, a possible biosynthetic pathwayfor chlorogenic acid has been proposed. 1 This paper constitutes Part 98 of the Phytopathological Chemistryof Sweet Potato with Black Rot or Injury. (Received November 2, 1971; )  相似文献   

14.
The kinetics of 14C-2-acetate assimilation by Chlorella pyrenoidosain the light were examined. Under aerobic conditions the primaryproduct of acetate assimilation was succinic acid which, afterten seconds, contained over 60 per cent of the 14C incorporatedby the cells. The percentage of the total 14C in succinate fellwith time, while that in citrate and glutamate increased. After1800 sec over 60 per cent of 14C was present in two compounds,glutamic acid and an unknown compound (X). Glucose-6-phosphate,fructose-6-phosphate, phosphoglyceric acid and phosphoenolpyruvicacid became labelled after 60 sec but together never containedmore than one per cent of the total 14C incorporated. Underanaerobic conditions succinate was still the primary productof acetate assimilation, and the absence of carbon dioxide resultedin a decrease in 14C incorporation into compound X. The patternof acetate assimilation in acetate grown and acetate adaptedChlorella was very similar to that in photo-autotrophicallygrown Chlorella. In the presence of 10–6M DCMU, succinicacid was the primary product of acetate assimilation, but therewas an early Incorporation of 14C into glutamate, aspartate,and malate. 4 x10–3M MFA did not effect the early incorporationof 14C into succinic acid, but resulted in accumulation of 14Cin citrate and a decreased amount in glutamate and in compound X.  相似文献   

15.
[1-14C]-ethanol supplied to the cotyledons of 9-d-old Euphorbialathyris seedlings was rapidly incorporated into unsaponifiablelipids, particularly into sterols, latex triterpenols and intothe triterpene ketones of the epicuticular wax. The [14C]-triterpenoidproduction from ethanol was hardly affected by sucrose in theexternal medium when sucrose uptake rates were low, but whenthe uptake rate was higher the [14C]-triterpenoid productionfrom [14C]-ethanol was greatly reduced. This observation isconsistent with the proposition that at high sucrose uptakerates, some sucrose is converted into ethanol, so that the incorporationof [14C]-ethanol into triterpenoids is reduced by competitionwith endogenously formed ethanol. A calculation based on theputative daily ethanol production in the cotyledons and thedaily triterpenoid production of seedlings indicates that about10 % of the triterpenoid synthesis in vivo may be from ethanol. Ethanol, Euphorbia lathyris, fermentation, seedling, triterpenoid biosynthesis  相似文献   

16.
The R- and S-enantiomers of racemic [2-14C]Me 1', 4'-cis-diolof abscisic acid have been separated by high performance liquidchromatography on an optically-active Pirkle column. R-[2-14C]-and S-[2-14C]abscisic acids, formed from the Me 1', 4'-cis-diolby oxidation and alkyline hydrolysis were fed to tomato shootsand the extracts analysed by reversed phase high performanceliquid chromatography. R-[2-14C]abscisic acid formed mainlythe abscisic acid glucose ester (ABAGE), abscisic acid l'-glucoside(ABAGS) and an uncharacterized conjugate. Dihydrophaseic acid4'-B-D-glucoside, the major metabolite of RS-abscisic acid intomato shoots, was found to be derived virtually exclusivelyfrom the natural, S-abscisic acid. Phaseic acid and conjugatesof abscisic acid were also found as products of the naturallyoccurring enantiomer. The resolution method was used to measurethe relative proportions of R and S enantiomers in the freeacid liberated from conjugates formed from RS-[2-14C]ABA fedto shoots. The ratios show an excess of the R-enantiomer: 5.8:1, ABAGE; 29.4: 1, ABAGE; 8.3: 1 for an uncharacterized conjugateand 6.1: 1 for the residual free [2-14C]ABA. Key words: ABA, HPLC, Tomato  相似文献   

17.
The metabolism of the major polar and neutral lipids of Viciafaba protoplasts isolated from 14CO2-fed leaves has been examined.The results show large losses in the radioactivity found inphosphatidylcholine and monogalactosyldiacylglycerol while thatof phosphatidylglycerol was stable. This loss was accountedfor by a rapid increase in the 14C content of the neutral lipids,particularly the triacylglycerols. Analysis of the fatty acidradioactivity in the lipids suggests that protoplast isolationinhibited fatty acid desaturation on phosphatidylcholine andpossibly on other lipids. These results also suggest a roleof phosphatidylcholine in the donation of fatty acids for triacylglycerolsynthesis in mesophyll protoplasts. The results are discussedin terms of the regulation of lipid metabolism and protoplastbiology. (Received April 20, 1984; Accepted August 27, 1984)  相似文献   

18.
Regulation of sterol synthesis was studied in Solanum species.A significant negative correlation was found between sterolcontent and rate of sterol synthesis from (1-14C) acetate inplant organs of Solanum nigrum and cell cultures of S. dulcamara.Exogenous cholesterol significantly inhibited the rate of sterolsynthesis from (14C) acetate in cell cultures of S. dulcamarawithout affecting synthesis from (3H) mevalonate. Exogenouscholesterol stimulated the rate of total lipid synthesis fromboth (14C) acetate and (3H) mevalonate. Thus, cholesterol inhibitedconversion of acetate to mevalonate; this is taken as evidenceof a negative feedback control on sterol synthesis. Key words: Feedback control, Phytosterol biosynthesis, Plant cell culture, Solanum species  相似文献   

19.
The extent of post-phloem solute transport through the coatsymplasts of developing seeds of Vicia faba L. and Phaseolusvulgaris L. was evaluated. For Vicia seed coats, the membrane-impermeantfluorochrome, CF, moved radially from the chalazal vein to reachthe chlorenchyma and thin-walled parenchyma transfer cell layers.Thereafter, the fluorochrome moved laterally in these two celllayers around the entire circumference of the seed coat. Transferof CF from the chalazal vein was inhibited by plasmolysis ofattached ‘empty’ seed coats. In contrast, the spreadof phloem imported CF was restricted to the ground parenchymaof Phaseolus seed coats. Fluorochrome loaded into the outermostground parenchyma cell layer was rendered immobile followingplasmolysis of excised seed-coat halves. Phloem-imported [14C]sucroseand the slowly membrane permeable sugar, L-[14C]glucose, werepartitioned identically between the vascular and non-vascularregions of intact Vicia seed coats. For 14C-photosynthates,these partitioning patterns in attached ‘empty’Vicia seed coats were unaffected by PCMBS, but inhibited byplasmolysis. Tissue autoradiographs of intact Phaseolus seedcoats demonstrated that a pulse of 14C-photosynthate moved fromthe veins to the grounds tissues. In excised Vicia seed coats,preloaded with 14C-photosynthates, the cellular distributionof residual 14C-label was unaffected by PCMBS. In contrast,PCMBS caused the 14C-photosynthate levels to be elevated inthe veins and ground parenchyma relative to the branch parenchymaof Phaseolusseed coat halves. Based on the above findings, itis concluded that the phloem of Vicia seed coats is interconnectedto two major symplastic domains; one comprises the chlorenchyma,the other the thin-walled parenchyma plus thin-walled parenchymatransfer cells. For Phaseolusseed coats, the phloem forms amajor symplastic domain with the ground parenchyma. Key words: Phaseolus vulgaris L, phloem unloading, photosynthate transport, seed coat, symplast, Vicia faba L  相似文献   

20.
ERRATA     
Page 678, line 3, for [4-14C] read [I-14C] Page 678, line 4, for [I-14C] read [4-14C] Page 679, line 17, for C-I of malate read C-4 of malate Page 679, line 18, for C-4 of malate read C-I of malate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号