首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in the NADH-semidehydroascorbate (SDA) reductase activity of rat liver was studied. NADH-SDA reductase activity was strongly inhibited by antibodies against OM cytochrome b and NADH-cytochrome b5 reductase, whereas no inhibition was caused by anti-cytochrome b5 antibody. NADH-SDA reductase exhibited the same distribution pattern as OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity among various subcellular fractions and submitochondrial fractions. Both activities were localized in outer mitochondrial membrane. These observations suggest that OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase system participates in the NADH-SDA reductase activity of rat liver.  相似文献   

2.
Experiments were performed to demonstrate the involvement of electron transport system in fatty acid elongation in rat brain microsomes. Mercuric chloride and p-chloromercuriphenylsulfonate, inhibitors on NADH-cytochrome b5 reductase, at 32 microM inhibited NADH-supported palmitoyl-CoA elongation to 30 and 60% of control activity, respectively, whereas NADPH-supported palmitoyl-CoA elongation was unaffected by these mercurials. An antibody to rat liver NADH-cytochrome b5 reductase inhibited brain microsomal NADH-cytochrome b5 reductase activity and NADH-dependent palmitoyl-CoA elongation. Treatment of brain microsomes with trypsin diminished the cytochrome b5 content; NADH- and NADPH-cytochrome c reductase activities were significantly decreased, but the decrease in NADH-cytochrome b5 reductase activity was relatively small. Whereas essentially no incorporation of malonyl-CoA into palmitoyl-CoA was observed with trypsin-treated microsomes, addition of detergent-solubilized cytochrome b5 resulted in a recovery of fatty acid elongation. These results indicate the presence of an electron transport system, NADH-NADH-cytochrome b5 reductase-cytochrome b5-fatty acid elongation, in brain microsomes.  相似文献   

3.
NADH could support the lipid peroxidation of rat liver microsomes in the presence of ferric ions chelated by ADP(ADP-Fe). The reaction had a broad pH optimum (pH 5.8--7.4) and was more active in the acidic pH range. Antibodies to NADH-cytochrome b5 reductase [EC 1.6.2.2] and cytochrome b5 inhibited NADH-dependent lipid peroxidation in the presence of ADP-Fe, whereas the antibody against NADPH-cytochrome c reductase [EC 1.6.2.4] showed no inhibition. These oberservations suggest that the electron from NADH was supplied to the lipid peroxidation reaction via NADH-cytochrome b5 reductase and cytochrome b5. On the other hand, NADPH-supported lipid peroxidation was strongly inhibited by the antibody against NADPH-cytochrome c reductase, confirming the participation of this this flavoprotein in the NADPH-dependent reaction. In the presence of both ADP-Fe and ferric ions chelated by EDTA(EDTA-Fe), NADH-dependent lipid peroxidation was highly stimulated up to the level of the NADPH-dependent reaction. In this case, the antibody against cytochrome b5 could not inhibit the reaction, while the antibody against NADH-cytochrome b5 reductase did inhibit it, suggesting the direct transfer of electrons from NADH-cytochrome b5 reductase to EDTA-Fe complex.  相似文献   

4.
We have obtained and studied a 105,000-g pellet from T-3-Cl-2 cells, a cloned line of Friend virus-induced erythroleukemia cells. By difference spectrophotometry, the pellet was shown to contain cytochrome b5 and cytochrome P-450, hemeproteins that have been shown to participate in electron-transport reactions of endoplasmic reticulum and other membranous fractions of various tissues. The pellet also possesses NADH-cytochrome c reductase activity which is inhibited by anti-cytochrome b5 gamma-globulin, indicating the presence of cytochrome b5 reductase. This is the first demonstration of membrane-bound forms of these redox proteins in erythroid cells. Dimethyl sulfoxide-treated T-3-Cl-2 cells were also shown to possess membrane-bound cytochrome b5 and NADH-cytochrome c reductase activity. We failed to detect soluble cytochrome b5 in the 105,000-g supernatant fraction from homogenates of untreated or dimethyl sulfoxide-treated T-3-Cl-2 cells. In contrast, erythrocytes obtained from mouse blood were shown to possess soluble cytochrome b5 but no membrane-bound form of this protein. These findings are supportive of our hypothesis that soluble cytochrome b5 of erythrocytes is derived from endoplasmic reticulum or some other membrane structure of immature erythroid cells during cell maturation.  相似文献   

5.
Biotransformation involving nitrogen are of pharmacological and toxicological relevance. In principle, nitrogen containing functional groups can undergo all the known biotransformation processes such as oxidation, reduction, hydrolysis and formation of conjugates. For the N-reduction of benzamidoxime an oxygen-insensitive liver microsomal enzyme system that required cytochrome b5, NADH-cytochrome b5 reductase and a cytochrome P450 isoenzyme of the subfamily 2D has been described. In previous studies it was demonstrated that N-hydroxylated derivates of strongly basic functional groups are easily reduced by this enzyme system. The N-hydroxylation of sulfonamides such sulfamethoxazole (SMX) and dapsone (DDS) to sulfamethoxazole-hydroxylamine (SMX-HA) and dapsone-hydroxylamine (DDS-N-OH), respectively is the first step in the formation of reactive metabolites. Therefore it seemed reasonable to study the potential of cytochrome b5, NADH-cytochrome b5 reductase and CYP2D to detoxify these N-hydroxylated metabolites by N-reduction. Metabolites were analysed by HPLC analysis. SMX-HA and DDS-N-OH are reduced by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D but also only by cytochrome b5 and NADH-cytochrome b5 reductase without addition of CYP2D. The reduction rate for SMX-HA by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 0,65 +/- 0,1 nmol SMX/min/mg protein. The reduction rate by b5 and b5 reductase was 0,37 +/- 0,15 nmol SMX/min/mg protein. For DDS-N-OH the reduction rate by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 1.79 +/- 0.85 nmol DDS/min/mg protein and by cytochrome b5 and NADH-cytochrome b5 reductase 1.25 +/- 0.15 nmol DDS/min/mg protein. Cytochrome b5, NADH-cytochrome b5 reductase are therefore involved in the detoxification of these reactive hydroxylamines and CYP2D increased the N-reduction.  相似文献   

6.
1. Lung NADH-cytochrome b5 reductase was saturated with its artificial substrate, potassium ferricyanide at approximately 0.1 mM ferricyanide concentration, and the activity of the lung enzyme was inhibited by the higher concentrations of potassium ferricyanide. Ferricyanide at 0.5 and 1.0 mM inhibited the activity of the enzyme by about 20 and 61% respectively. The apparent Km value was calculated as 13.7 microM potassium ferricyanide and 4.3 microM NADH. 2. The Michaelis constants for cytochrome b5 and NADH were determined to be 1.67 and 7.7 microM from the Lineweaver-Burk plots. These results demonstrate that affinity of the lung reductase for its natural substrate is almost 10 times higher than that for potassium ferricyanide. 3. Addition of non-ionic detergent stimulated the rate of reductase-catalyzed reduction of lung cytochrome b5 up to 8.2-fold. 4. Kinetic studies performed with lung reductase by varying NADH and cytochrome b5 concentrations at different fixed concentrations at cytochrome b5 or NADH showed a series of parallel lines indicating a "ping-pong" type of kinetic mechanism for interaction of NADH and cytochrome b5 with lung cytochrome b5 reductase.  相似文献   

7.
Tissue, cellular, and subcellular distributions of OM cytochrome b-mediated NADH-semidehydroascorbate (SDA) reductase activity were investigated in rat. NADH-SDA reductase activity was found in the post-nuclear particulate fractions of liver, kidney, adrenal gland, heart, brain, lung, and spleen of rat. Liver, kidney, and adrenal gland had higher NADH-SDA reductase activity than other tissues, and OM cytochrome b-dependent activity was 60-70% of the total activity. On the other hand, almost all of the reductase activity of heart and brain cells was mediated by OM cytochrome b. The ratio of the OM cytochrome b-mediated activities of NADH-SDA reductase to rotenone-insensitive NADH-cytochrome c reductase varied among these tissues. OM cytochrome b-mediated NADH-SDA reductase and rotenone-insensitive NADH-cytochrome c reductase activities were mainly present in the parenchymal cells of rat liver. The localization of the cytochrome-mediated reductase activities in the outer mitochondrial membrane was confirmed by subfractionation of liver mitochondria. Among the submicrosomal fractions, OM cytochrome b-mediated NADH-SDA reductase activity was highest in the cis-Golgi membrane fraction, in which monoamine oxidase activity was also highest. On the other hand, OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity showed a slightly different distribution pattern from the NADH-SDA reductase activity. Thenoyltrifluoroacetone (TTFA), a metal chelator, effectively inhibited the NADH-SDA reductase activity, though other metal chelators did not affect the activity. TTFA failed to inhibit rotenone-insensitive NADH-cytochrome c reductase activity at the concentration which gave complete inhibition of NADH-SDA reductase activity.  相似文献   

8.
To clarify the molecular organization of NADH- and NADPH-dependent microsomal redox systems their isolated purified carriers were incorporated into immobilized azolectin layer with a higher viscosity than that of the liposomes. It was shown that the NADH-cytochrome c reductase activity characterizing the NADH-cytochrome b5 reductase and cytochrome b5 interaction sharply decreased in the immobilized system as compared to that in solution. However, the activity of hydroxylase reactions catalyzed by immobilized NADPH-cytochrome P-450 reductase and cytochrome P-450 was the same as in solution. This, the reconstitution in the immobilized phospholipid layer allowed to characterize NADH-cytochrome b5 reductase as a system operating on occasional collisions of its components. On the contrary, the diffusion of the NADPH-dependent redox chain carriers was not the rate-limiting step of the reaction.  相似文献   

9.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

10.
In a number of animal species soluble NADH-cytochrome b5 reductase of erythrocytes was compared with membrane-bound NADH-cytochrome b5 reductase of liver microsomes by using an antibody to purified NADH-cytochrome b5 reductase from rat liver microsomes. The results obtained indicated clearly that they are immunologically very similar to each other. The data with erythrocyte ghosts suggested that cytochrome b5 and NADH-cytochrome b5 reductase are also present in the ghost.  相似文献   

11.
The presence of NADH-cytochrome b5 reductase [EC 1.6.2.2] in microsomes from anaerobically grown yeast was confirmed by its isolation and purification. The purified preparation of the reductase showed an apparent molecular weight of 27,000 daltons. The reductase appeared to contain loosely-bound FAD as a prosthetic group. The reductase required NADH as a specific electron donor, and could reduce some redox dyes as well as cytochrom b5. The reductase, however, could not reduce cytochrome c. Michaelis constants of the reductase for NADH and calf liver cytochrome b5 were 6.3 and 1.5 micron M, respectively, and optimal pH for cytochrome b5 reduction was 5.6. Although some differences exist between the properties of NADH-cytochrome b5 reductase from yeast and from mammalia, the results indicate a functional similarity of the present enzyme to mammalian NADH-cytochrome b5 reductase in the microsomal electron-transport system.  相似文献   

12.
A NADH-cytochrome c reductase activity was increased upon mitogen stimulation of human lymphocytes. The activity was not inhibited by antimycin A or rotenone but was specifically inhibited by antibodies elicited against rat liver NADH-cytochrome b5 reductase or cytochrome b5. The activity was linear with cellular homogenates up to 5.2 × 106 cells/ml and had abroad pH optimum of 7.7. The presence of 3-methylcholanthrene in mitogen stimulation media had no effect on the NADH-cytochrome c reductase activity but differentially induced the benzo(a)pyrene hydroxylase (AHH) activity. The reductase activity was present in nonstimulated cells and appears not to be significantly increased in activity per cell upon mitogen-stimulation of the peripheral lymphocyte.  相似文献   

13.
A soluble form of NADH-cytochrome b5 reductase (NADH: ferricytochrome b5 oxidoreductase, EC 1.6.2.2) was found in the cytosolic fraction of rabbit liver. The partially purified enzyme was strictly specific for NADH. It catalyzed the reduction of several substrates such as the methemoglobin-ferrocyanide complex (Hegesh, E. and Avron, M. (1967) Biochim. Biophys. Acta 146, 91-101) (apparent Km: 8 micrometer), potassium ferricyanide (apparent Km: 10 micrometer) and ferricytochrome b5 (apparent Km: 15 micrometer). Upon acrylamide gel isoelectro-focusing followed by specific staining, the enzyme was resolved into four bands (isoelectric pH: 7.05, 6.70, 6.50 and 6.30). The optimum pH of activity with ferricytochrome b5 as a substrate was 6.5. The estimated molecular weight was 25 000--30 000. The enzyme was unsensitive to cyanide. It was strongly inhibited by p-hydroxymercuribenzoate. The cytosolic liver cytochrome b5 reductase was immunologically related to the soluble cytochrome b5 reductase from human and rabbit red-cells, and to the microsomal cytochrome b5 reductase from rabbit liver.  相似文献   

14.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

15.
With CYP2E1 in vitro both the first and the second electron of the catalytic cycle can come from cytochrome b(5) via either NADPH-cytochrome P450 reductase or NADH-cytochrome b(5) reductase, and the presence of cytochrome b(5) stimulates CYP2E1 turnover both in vitro and in vivo. To determine whether electron input via the NADH-dependent pathway was similarly functional in whole cells and necessary for the stimulation by cytochrome b(5), we constructed five plasmids designed to express human CYP2E1 in various combinations with cytochrome b(5) reductase, cytochrome b(5), and cytochrome P450 reductase. CYP2E1 activity in Salmonella typhimurium cells transformed with each plasmid was assessed by mutagenic reversion frequency in the presence of dimethylnitrosamine. A fivefold increase in reversion frequency when cytochrome b(5) was coexpressed with P450 reductase was abolished by disruption of heme-binding in cytochrome b(5) by site-directed mutagenesis (His68Ala), suggesting that electron transfer to cytochrome b(5) was necessary for the stimulation. Addition of cytochrome b(5) reductase to the cytochrome b(5)/P450 reductase coexpression plasmid did not further increase the stimulation by cytochrome b(5), but b(5) reductase could support CYP2E1 activity in the absence of P450 reductase at a level equivalent to that obtained with just CYP2E1 and P450 reductase. Neither cytochrome b(5) reductase nor cytochrome b(5) alone could support CYP2E1 activity. These results demonstrate that the cytochrome b(5) reductase/cytochrome b(5) pathway can support CYP2E1 activity in bacterial cells.  相似文献   

16.
17.
K Mihara  R Sato  R Sakakibara  H Wada 《Biochemistry》1978,17(14):2839-2834
Microsomal NADH-cytochrome b5 reductase is an amphiphilic protein consisting of a hydrophilic (catalytic) region and a hydrophobic (membrane-binding) segment. Digestion of the reductase purified from rabbit liver microsomes with carboxypeptidase Y (CPY), but not with aminopeptidases, resulted in the abolishment of the capacities of the reductase to bind to phosphatidylcholine liposomes and to reconstitute an active NADH-cytochrome c reductase system upon mixing with cytochrome b5. The NADH-ferricyanide reductase activity of the flavoprotein was, however, inactivated only slightly by the CPY digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid analyses indicated that the CPY treatment removed about 30 amino acid residues from the tcooh terminus of the reductase and that about 70% of the amino acids released were hydrophobic. It is concluded that the hydrophobic region of the reductase, responsible for both membrane binding and effective reconstitution of NADH-cytochrome c reductase activity, is located at the COOH-terminal portion of the molecule. No NH2-terminal residue could be detected in the intact and CPY-modified reductase preparations. The location of the hydrophobic, membrane-binding segment at the COOH-terminal end and the masked NH2 terminus have also been reported for cytochrome b5, another microsomal membrane protein.  相似文献   

18.
The role of NADH-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported electron transport reactions in rat liver microsomes has been examined by measuring three enzyme activities: NADH-cytochrome P-450 reductase, NADH-peroxidase, and NADH-cytochrome c reductase. The first two reactions are known to involve the participation of an NADH-specific reductase and cytochrome P-450 whereas the third requires the reductase and cytochrome b5. Antibody prepared against NADH-cytochrome b5 reductase markedly inhibited the NADH-peroxidase and NADH-cytochrome c reductase activities suggesting the involvement of this NADH-specific reductase in these reactions. Liver microsomes prepared from phenobarbital-pretreated rats were digested with subtilisin to remove cytochrome b5 and the submicrosomal particles were collected by centrifugation. The specific content of cytochrome b5 in the digested particles was about 5% of that originally present in liver microsomes and all three enzyme activities showed similar decreases whereas NADH-ferricyanide reductase activity (an activity associated with the flavoenzyme NADH-cytochrome b5 reductase) remained virtually unchanged. Binding of an excess of detergent-purified cytochrome b5 to the submicrosomal particles at 37 °C for 20 min followed by centrifugation and enzymic measurements revealed a striking increase in the three enzyme activities. Further evidence for cytochrome b5 involvement in the NADH-peroxidase reaction was the marked inhibition by antibody prepared against the hemoprotein. These results suggest that in microsomal NADH-supported cytochrome P-450-dependent electron transport reactions, cytochrome b5 functions as an intermediate electron carrier between NADH-cytochrome b5 reductase and cytochrome P-450.  相似文献   

19.
ATP synthesis during exogenous NADH oxidation. A reappraisal   总被引:1,自引:0,他引:1  
This paper reports a reinvestigation on the pathway for mitochondrial oxidation of exogenous NADH and on the related ATP synthesis, first reported 30 years ago (Lehninger, A.L. (1951) J. Biol. Chem. 190, 345-359). NADH oxidation, both in intact and in water-treated mitochondria, is 90% inhibited by mersalyl, an inhibitor of the outer membrane NADH-cytochrome b5 reductase, and 10% inhibited by rotenone. The mersalyl-sensitive, but not the rotenone-sensitive, portion of NADH oxidation is stimulated by exogenous cytochrome c. Part of ATP synthesis is independent of exogenous NADH and cytochrome c, and is inhibited by rotenone and antimycin A, and is therefore due to oxidation of endogenous substrates. Another part of ATP synthesis is dependent on exogenous NADH and cytochrome c, is insensitive to rotenone and antimycin A, and is due to operation of cytochrome oxidase. It is concluded that (i) oxidation of exogenous NADH in the presence of cytochrome c proceeds mostly through NADH-cytochrome b5 reductase and cytochrome b5 on the outer membrane and then through cytochrome oxidase via the cytochrome c shuttle, and (ii) ATP synthesis during oxidation of exogenous NADH is partly due to oxidation of endogenous substrates and partly to operation of cytochrome oxidase receiving electrons from the outer membrane via cytochrome c.  相似文献   

20.
Two subcellular fraction, P-1 and P-2, were isolated by differential centrifugation from 0.25 M sucrose muscle homogenates of the parasitic roundworm, Ascaris lumbricoides suum. Morphological studies indicated that P-1 fraction consisted of intact mitochondria, whereas P-2 fraction consisted almost exclusively of vesicular components. The difference spectrum of Ascaris microsomes showed a characteristic b-type cytochrome spectrum with three distinct absorption peaks at 560, 525, and 424 nm. However, the alpha-peak at 560 nm was asymmetric with a shoulder at 555 nm. This microsomal b-type cytochrome was reduced by NADH, which was inhibited by rotenone and HgCl2. The reduced b-type cytochrome was easily reoxidized by shaking. NADH-oxidase activity observed in Ascaris microsomes was inhibited by rotenone, but not by KCN, NaN3, and antimycin A. On the other hand, NADH-cytochrome c and NADH-neotetrazolium (NT) reductase activities in Ascaris microsomes were not inhibited by antimycin A and rotenone, but were inhibited by HgCl2. Further observations indicated that neither HgCl2 nor rotenone inhibited Ascaris microsomal NADH-ferricyanide (FC) reductase activity, but rabbit antibody prepared against the purified NADH-FC reductase inhibited the NADH-cytochrome c reductase activity, the reduction of b-type cytochrome and the NADH-oxidase activity, as well as microsomal NADH-FC reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号