首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cellular localization of acid carboxypeptidase inAspergillus oryzae   总被引:1,自引:1,他引:0  
Fresh mycelia ofAspergillus oryzae were shown to have strong acid carboxypeptidase (EC 3.4.12.-) activity. The cellular localization of acid carboxypeptidase was investigated using the broken mycelia and the protoplasts of the fungusAspergillus oryzae IAM 2640. In the broken mycelia, about 40% of the total activity was found in the “cell wall” fraction (2,000×g), with most of the remainder in the soluble fraction (100,000×g supernatant). During the formation of protoplasts, most of the acid carboxypeptidase in the mycelia was solubilized and released. The specific activity of acid carboxypeptidase in the lysed protoplasts was about 10-fold lower than that found in the broken mycelial preparation. These data indicate that most of the acid carboxypeptidase is probably located in the cell surface, which includes the cell wall, the periplasm, and the cell membrane.  相似文献   

2.
The photosynthetic performances of regenerated protoplasts of Bryopsis hypnoides, which were incubated in seawater for 1, 6, 12, and 24 h, were studied using chlorophyll (Chl) fluorescence and oxygen measurements. Results showed that for the regenerated protoplasts, the pigment content, the ratios of photosynthetic rate to respiration rate, the maximal photosystem II (PSII) quantum yield (Fv/Fm), and the effective PSII quantum yield (ΦPSII) decreased gradually along with the regeneration progress, indicated that during 24 h of regeneration there was a remarkable reduction in PSII activity of those newly formed protoplasts. We assumed that during the cultivation progress the regenerated protoplasts had different photosynthetic vigor, with only some of them able to germinate and develop into mature thalli. The above results only reflected the photosynthetic features of the regenerated protoplasts at each time point as a whole, rather than the actual photosynthetic activity of individual aggregations. Further investigation suggested a relationship between the size of regenerated protoplasts and their viability. The results showed that the middle-sized group (diameter 20–60 μm) retained the largest number of protoplasts for 24 h of growth. The changes in Fv/Fm and ΦPSII of the four groups of differently sized protoplasts (i.e. < 20, 20–60, 60–100, and > 100 μm) revealed that the protoplasts 20–60 μm in diameter had the highest potential activity of the photosynthetic light energy absorption and conversion for several hours.  相似文献   

3.
 A protocol for plant regeneration from mesophyll/protoplasts of sorghum [Sorghum bicolor (L.) Moench] was developed. The yield of intact protoplasts, their subsequent divisions and regeneration were genotype-dependent. The genotype 296B was always more responsive than IS 32266. For 296B, the sixth leaf from 18-day-old plants kept in dark for 2 days before harvesting was found to be the most suitable source of viable protoplasts. The first division was observed 10–12 days after plating, and the second division after 12–14 days. The maximum plating efficiency was 4.8% in 296 B, followed by 2.48% in IS 32266. Microcolonies were visible after 25–30 days, and microcalli after 60–75 days. Whole plants were obtained after 6–8 weeks of culture of microcalli on MS medium containing 0.2 mg l–1 kinetin and 2 mg l–1 BAP. The frequency of regeneration in 296B and IS 32266 was 12.80% and 10.58%, respectively. Ten plants transferred to pots in the glasshouse established well. The seeds collected from glasshouse-grown plants were sown in the field where plants were grown to maturity. Received: 7 October 1998 / Revision received: 13 January 1999 / Accepted: 20 January 1999  相似文献   

4.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

5.
Protoplasts were isolated from embryogenic suspension cultures derived from avocado (Persea americana Mill.) zygotic embryos and nucellus in an enzyme digestion solution consisting of 1% cellulase Onozuka RS, 1% Macerase R10, 0.2% Pectolyase Y-23, 0.7 M mannitol. 24.5 mM CaCl2, 0.92 mM NaH2PO4 and 6.25 2-[N-morpholino]ethanesulfonic acid (1.5 ml) mixed with 0.7 M MS8P (2.5 ml). MS-8P medium consisted of Murashige and Skoog salts without NH4NO3, 1 mg l–1 thiamine HCl, 100 mg l–1 myo-inositol, 3.1 g l–1 glutamine and 8P organic addenda. Medium osmolarity was adjusted with 0.15 M sucrose and 0–0.55 M mannitol. Protoplast yields of 3.5×106 protoplasts g–1 were obtained. Growth and development of the protoplasts were significantly affected by osmolarity, nitrogen source, plating density and culture medium dilution. Under optimum conditions, proembryos developed directly from embryogenic protoplasts and subsequently into somatic embryos. Optimum conditions for somatic embryo development included the culture of protoplasts at a density of 0.8–1.6×105 ml–1 in 0.4 M MS8P for 2–3 weeks, followed by subculture in 0.15 M MS8P at a diluted density of 20–40× for 1 month in darkness to obtain somatic embryos. Mature somatic embryos were recovered on semisolid medium; however, a low frequency of plantlet recovery (≤1%) from protoplast-derived somatic embryos was observed. Received: 9 February 1998 / Revision received: 4 May 1998 / Accepted: 15 May 1998  相似文献   

6.
Isolated protoplasts of Ulva pertusa and Enteromorpha prolifera were electrically fused. Treatment of protoplasts in 1% protease for 15–20 min prior to fusion enhanced fusion ability. Protoplasts from each fusion partner were mixed together in 1:1 ratio in low conductivity electrofusion solution at a density of 1 × 105 cells ml−1 before subjecting them to electrofusion. The protoplasts were aligned in AC field (1MHz, 25 V for 10–15 s) and subsequently fused by a high intensity single DC pulse of 250 V for 25 μs duration. Fusion buffer supplemented with 1 mM calcium and 1 mM magnesium yielded optimum fusion frequencies (about 18–24%). Entrapment of fusion treated cells inside agarose/agar plate facilitated marking and regeneration of fusion products. The regeneration patterns of fused protoplasts were similar to normal (unfused) protoplast development. Most of the regenerated plants from fusion products had a thallus similar to either U. pertusa type or E. prolifera type. Although some of the plants of the former were morphologically similar to U. pertusa, but most had a higher growth rate (1.9 to 1.5 times) than U. pertusa. Furthermore the thallus of some plants had a characteristic irregular and dentate margin, which was never observed in the parental type.  相似文献   

7.
A protocol is presented for regenerating plants from leaf protoplasts of Oenothera. The method uses (1) embedding of isolated protoplasts at high cell densities in thin alginate layers, (2) initial culture in B5 medium containing 3 mg l–1 α-naphthaleneacetic acid (NAA) and 1 mg l-1 6-benzylaminopurine (BAP), (3) reduction of the osmotic pressure of the culture medium at early stages of culture and (4) plating of microcolonies recovered from the alginate onto solid B5 medium with 3 mg l–1 NAA and 1 mg l–1 BAP. The shortest time required from protoplast isolation to the appearance of shoot initials was 7 weeks. The efficiency of the procedure for protoplast to cell line formation is high (about 80%). Received: 17 February 1997 / Revision received: 6 November 1997 / Accepted: 15 November 1997  相似文献   

8.
The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (β-1,4-mannan, β-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized β-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of β-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP–CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP–CBM27 maintained its binding ability to soluble β-mannans, while normal GFP could not bind to β-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP–CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete β-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, β-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP–CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP–CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of β-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.  相似文献   

9.
Summary Protoplasts were isolated from leaves ofBetula platyphylla var.japonica using a 0.6M mannitol solution containing 1% Cellulase Onozuka R-10 and 1% Driselase. The cell division and colony formation were largely enhanced using Murashige and Skoog (1962) liquid medium at half strength (1/2 MS), containing 0.6M mannitol, 0.09M sucrose, and factorial combinations of 0.1–30 μM N-(2-chloro-4-pyridyl)-N′-phenylurea (4-pu) and 0.1–10 μM 1-naphthaleneacetic acid (NAA) or 0.1–30 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The optimal protoplast density was 5–7 × 104/ml. Continuous callus proliferation from protoplasts was achieved by transferring colonies to fresh 1/2 MS agar medium containing 1 μM NAA and 1 μM 4-pu with no mannitol. It appeared that supplementation of the medium with phenylurea type cytokinin, 4-pu gave the successful callus proliferation from the protoplasts ofB. platyphylla.  相似文献   

10.
Protoplasts from Trichoderma reesei were immobilized in alginate and induced to produce cellulase (endoglucanase and β-glucosidase) enzymes. The specific activities of the synthesized enzymes were higher in immobilized protoplasts than in both free and immobilized mycelia. Immobilized protoplasts show an enhanced rate of exocellular β-glucosidase production compared to intact mycelia due to the lack of cell wall. The ratio of the exocellular/intracellular β-glucosidase was 5.9 for immobilized protoplasts and 0.32 for free mycelia.  相似文献   

11.
Summary Treatment ofBacillus thuringiensis andAgrobacterium tumefaciens taken from the early growth phase (8 h) with lysozyme at 1 mg/ml gave 90–99% protoplast formation and 10–12% protoplast regeneration on the minimal medium in absence of plasma expander (Bovine serum albumin). Enhanced fusion frequency was obtained when protoplasts from 8 h grown cells were used for fusion experiments.  相似文献   

12.
Ten accessions belonging to the Brassica oleracea subspecies alba and rubra, and to B. oleracea var. sabauda were used in this study. Protoplasts were isolated from leaves and hypocotyls of in vitro grown plants. The influence of selected factors on the yield, viability, and mitotic activity of protoplasts immobilized in calcium alginate layers was investigated. The efficiency of protoplast isolation from hypocotyls was lower (0.7 ± 0.1 × 106 ml−1) than for protoplasts isolated from leaf mesophyll tissue (2 ± 0.1 × 106 ml−1). High (70–90%) viabilities of immobilized protoplasts were recorded, independent of the explant sources. The highest proportion of protoplasts undergoing divisions was noted for cv. Reball F1, both from mesophyll (29.8 ± 2.2%) and hypocotyl (17.5 ± 0.3%) tissues. Developed colonies of callus tissue were subjected to regeneration and as a result plants from six accessions were obtained.  相似文献   

13.
Gareis M  Gareis EM 《Mycopathologia》2007,163(4):207-214
Eight of eleven ochratoxigenic isolates of Penicillium nordicum and Penicillium verrucosum produced guttation droplets when grown on Czapek yeast extract (CYA) agar for 10–14 days at 25°C. Parallel cultivation of one strain each of P. nordicum and P. verrucosum on malt extract agar demonstrated that higher volumes of exudate are produced on this agar. However, HPLC analyses revealed higher concentrations of ochratoxin A (OTA) and B (OTB) in droplets originating from cultures on CYA. For quantitative determination of the mycotoxin contents, triplicates of three isolates each of P. nordicum and P. verrucosum were grown as single spot cultures on CYA for up to 14 days at 25°C. Guttation droplets were carefully collected between day 11 and 14 with a microliter syringe from each culture. Extracts from exudates and corresponding mycelia as well as fungal free agar were analyzed by HPLC for the occurrence of ochratoxin A (OTA) and B (OTB). Mean concentrations ranging between 92.7–8667.0 ng OTA and 159.7–2943.3 ng OTB per ml were detected in the guttation fluids. Considerably lower toxin levels were found in corresponding samples of the underlying mycelia (9.0–819.3 ng OTA and 4.5–409.7 ng OTB/g) and fungal free agar (15.3–417.0 ng OTA and 12.7–151.3 ng OTB/g). This is the first report which shows that high amounts of mycotoxins could be excreted from toxigenic Penicillium isolates into guttation droplets.  相似文献   

14.
Symptoms of fairy rings caused by Lepista sordida have been reported on Zoysiagrass (Zoysia spp.) turf maintained at fairway height (2 cm), but not on bentgrass (Agrostis spp.) maintained at putting green height (0.5 cm). The mycelia of this fungus inhabit primarily the upper 0–2 cm layer of the soil extending into the thatch. To compare conditions for the mycelial growth in Z. matrella turf to those in A. palustris turf, we examined the effects of nutrients, temperature, water potential, and pH in the field as well as in the laboratory. Greater growth of the mycelia was observed in medium that included hot water extracts from soil of the 0–1 cm zone in Z. matrella turf compared to that from A. palustris. The upper soil layer in Z. matrella turf contained more organic matter from clippings than that in A. palustris. The temperature and water potential of the 0–2 cm soil zone in Z. matrella turf were also more favorable for the mycelial growth. The soil pH values of this zone in Z. matrella turf were less favorable compared to A. palustris but within the range for accelerating mycelial growth. Part of this study was presented orally at the 46th meeting of the Mycological Society of Japan in 2002  相似文献   

15.
Five ethanolic extracts from the mycelia of Ganoderma lucidum, G. tsugae, G. oerstedii, G. subamboinense, and G. resinaceum were respectively studied on their anticancerous activities against leukemic HL-60 cell line in vitro. Results showed that all five extracts potently inhibited HL-60 proliferation. The extract from G. lucidum mycelia exerted the highest activity. Annexin V/PI bivariate flow cytometric analysis further revealed that the five extracts significantly induced early apoptosis in HL-60 cells. The results illustrate that not only G. lucidum but also other Ganoderma species can inhibit cancer cells, and their mechanisms are related to induction of apoptosis. __________ Translated from Journal of Shanghai Normal University (Natural Sciences), 2005, 34(2): 77–81 [译自: 上海师范大学学报 (自然科学版), 2005, 34(2): 77–81]  相似文献   

16.
Igamberdiev AU  Shen T  Gardeström P 《Planta》2006,224(1):196-204
Mitochondrial contribution to photosynthetic metabolism during the transition from low light (25–100 μmol quanta m−2 s−1, limiting photosynthesis) to high light (500 μmol quanta m−2 s−1, saturating photosynthesis) was investigated in protoplasts from barley (Hordeum vulgare) leaves. After the light shift, photosynthetic oxygen evolution rate increased rapidly during the first 30–40 s and then declined up to 60–70 s after which the rate increased to a new steady-state after 80–110 s. Rapid fractionation of protoplasts was used to follow changes in sub-cellular distribution of key metabolites during the light shift and the activation state of chloroplastic NADP-dependent malate dehydrogenase (EC 1.1.1.82) was measured. Although oligomycin (an inhibitor of the mitochondrial ATP synthase) affected the metabolite content of protoplasts following the light shift, the first oxygen burst was not affected. However, the transition to the new steady-state was delayed. Rotenone (an inhibitor of mitochondrial complex I) had similar, but less pronounced effect as oligomycin. From the analysis of metabolite content and sub-cellular distribution we suggest that the decrease in oxygen evolution following the first oxygen burst is due to phosphate limitation in the chloroplast stroma. For the recovery the control protoplasts can utilize ATP supplied by mitochondrial oxidative phosphorylation to quickly overcome the limitation in stromal phosphate and to increase the content of Calvin cycle metabolites. The oligomycin-treated protoplasts were deficient in cytosolic ATP and thereby unable to support Calvin cycle operation. This resulted in a delayed capacity to adjust to a sudden increase in light intensity.  相似文献   

17.
The conidia–mycelia transformation is an essential step during the life cycle of the fungal human pathogens of the Pseudallescheria boydii complex. In the present study, we have analyzed the protein and peptidase profiles in two distinct morphological stages, conidia and mycelia, of Scedosporium apiospermum sensu stricto. Proteins synthesized by the mycelia, migrating at the ranges of 62–48 and 22–18 kDa, were not detected from the conidial extract. Conidia produced a single cellular peptidase of 28 kDa able to digest copolymerized albumin, while mycelia yielded 6 distinct peptidases ranging from 90 to 28 kDa. All proteolytic enzymes were active at acidic pH and fully inhibited by 1,10-phenanthroline, characterizing these activities as metallo-type peptidases. Quantitative peptidase assay, using soluble albumin, showed a high metallopeptidase production in mycelial cells in comparison with conidia. The regulated expression of proteins and peptidases in different morphological stages of S. apiospermum represents a potential target for isolation of stage-specific markers for biochemical and immunological analysis. Martha Machado Pereira and Bianca Alcantara Silva contributed equally to this work.  相似文献   

18.
Transgenic plants with the herbicide-resistance gene (bar gene) were obtained via organogenesis from isolated mesophyll protoplasts of Nierembergia repens after applying electroporation. Transient β-glucuronidase (GUS) activity of electroporated protoplasts assayed 2 days after applying an electric pulse showed that optimum condition (transient GUS activity 319 pmol 4 MU/mg per min and plating efficiency 2.43%) for electroporation was 0.5 kV/cm in field strength and 100 μF in capacitance. The protoplasts electroporated with the bar gene at this condition initiated formation of microcolonies on medium after 2 weeks. After 4 weeks of culture, equal volume of fresh 1/2-strength Murashige and Skoog (MS) medium containing 0.2 mg/l bialaphos was added for selection of transformed colonies. After 6 weeks of culture, growing colonies were transferred onto regeneration medium containing 1.0 mg/l bialaphos, on which they formed adventitious shoots 1–2 months after electroporation. The adventitious shoots rooted easily after transfer onto MS medium with bialaphos lacking plant-growth regulators. Transformation of these regenerants with the bar gene was confirmed by Southern analysis. Some of the transformants showed strong resistance to the application of bialaphos solution at 10.0 mg/l.  相似文献   

19.
A structure of fungal flora was studied in aggregates of various diameter in a chernozemic rendzina and a lessivè soil. Aggregate diameter influenced strongly the distribution of fungi such asCephalosporium, Fusarium, Penicillium and sterile mycelia. The percentage of the above fungi changed with changing aggregate diameter as follows:Cephalosporium: 1–3>5–7 >0.5 in lessivè soil and ≤0.5>5–7>1–3 in chernozemic rendzina,Fusarium: ≤0.5>1–3>5–7 in lessivè soil and 5–7>1–3>0.5 in chernozemic rendzina,Penicillium: 5–7>0.5>1–3 in lessivè soil and 1–3>0.5>5–7 in chernozemic rendzina. The effect of aggregate size on the generic composition of fungal flora in the outer and inner parts of the aggregates was weaker than on that in the whole aggregates. This held especially forCephalosporium, Fusarium and sterile mycelia in the outer part of aggregates andPenicillum in the inner one. Moreover, the percentage of some fungi in whole aggregates of both soils was affected byV a/V w in the aggregates. Additional effect in lessivè soil aggregates was that of the percentage of pores measuring 0.1–0.05 μm. Some pores affected the contents of some fungi in the outer part of the aggregates of both soils and in the inner one of chernozemic rendzina aggregates.  相似文献   

20.
Somatic hybrid plants were obtained following the electrofusion of rice (Oryza sativa L. cv ’Taipei 309’, 2n = 2x = 24) cell suspension–derived protoplasts with non-dividing leaf protoplasts of Porteresia coarctata (2n = 4x = 48), a saline-tolerant wild species. Fusion-treated protoplasts were plated on the surface of cellulose nitrate filter membranes, overlaying Lolium multiflorum nurse cells. The nurse cells were embedded in KPR medium containing 0.5 mg l−1 2,4–dichlorophenoxyacetic acid and semi-solidified with SeaPlaque agarose. Putative somatic hybrid cell colonies were selected on the basis of their growth, whereby faster growing colonies were transferred preferentially to MS-based medium with 2.0 mg l−1 kinetin, 0.5 mg l−1α-naphthaleneacetic acid, 30 g l−1 sucrose and 4.0 g l−1 SeaKem agarose to induce shoot regeneration. One hundred and nineteen regenerated plants were micropropagated clonally on MS-based medium containing 2.0 mg l−1 6–benzylaminopurine, 50 g l−1 sucrose and 4.0 g l−1 SeaKem agarose, prior to DNA extraction of plant samples. Putative somatic hybrids were initially identified by RAPD analysis, and 8 plant lines were selected for further investigation by flow cytometric ploidy determination and cytology. Plants of one line had an allohexaploid chromosome complement (2n = 6x = 72) and, following examination of its vegetative clones by GISH, were confirmed as somatic hybrids containing full chromosome complements of both O. sativa and P. coarctata. Received: 27 July 1998 / Accepted: 19 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号