首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this study was to analyze the proteins in the cerebrospinal fluid of spontaneously hypertensive rats and to study their possible role in the relationship between hydrocephalus, arterial hypertension and variations in the subfornical organ. Brains and cerebrospinal fluid from control Wistar-Kyoto rats and spontaneously hypertensive rats sacrificed with chloral hydrate were used. Cerebrospinal fluid and extract of subfornical organ were processed by protein electrophoresis. Antisera against protein bands of 141, 117 and 48 kDa and Concanavalin A were used for immunohistochemical and western blot study of the subfornical organ, adjacent circumventricular structures and cerebrospinal fluid. Ventricular dilation in the spontaneously hypertensive rats and the presence of quite a lot of protein bands in the cerebrospinal fluid of the hypertensive rats, which were either not observed or scarcely present in the cerebrospinal fluid of the Wistar-Kyoto rats, were confirmed. The subfornical organ, third ventricle ependyma and choroideus plexus showed immunoreactive material for antibodies against 141kDa, 117 and 48 kDa proteins band (anti-B1, anti-B2 and anti-B3). The larger amount of the immunoreactive material was found in the subfornical organ of the spontaneously hypertensive rat. Our results and the alterations observed by other authors in the subfornical organ in hydrocephalic and hypertensive rats support the possibility that this circumventricular organ, some proteins of the cerebrospinal fluid and ventricular dilation could be connected with the physiopathology of this type of hypertension.  相似文献   

2.
We studied the effects of spontaneous high blood pressure and the captopril treatment on the subfornical organ (SFO) of rats. The brains of control Wistar-Kyoto rats (WKY), WKY rats treated with captopril (WKY-T), spontaneously hypertensive rats (SHR) and SHR rats treated with captopril (SHR-T) were processed immunohistochemically using anti-angiotensin II as primary antibody. Immunorective material (IRM) for angiotensin II was observed in a group of neurons and some cells of the ependymal layer of the SFO in WKY rats. The angiotensin II immunoreactive (AGII-ir) in the SHR rats was decreased, showing positive reaction only in a few neurons, while captopril treatment induced an increase in immunoreactive material in hypertensive rats, but contrarily, the expression of AGII-ir in the WKY-T group was scarce. The variations of the angiotensin II observed in the SFO could be owing to an interaction between the hypertension and its captopril treatment.  相似文献   

3.
Hypertension is involved in the exacerbation of stroke. It is unclear how blood-brain barrier (BBB) tight-junction (TJ) and ion transporter proteins critical for maintaining brain homeostasis contribute to cerebral infarction during hypertension development. In the present study, we investigated cerebral infarct volume following permanent 4-h middle cerebral artery occlusion (MCAO) and characterized the expression of BBB TJ and ion transporter proteins in brain microvessels of spontaneously hypertensive rats (SHR) compared with age-matched Wistar-Kyoto (WKY) rats at 5 wk (prehypertension), 10 wk (early-stage hypertension), and 15 wk (later-stage hypertension) of age. Hypertensive SHR show increased infarct volume following MCAO compared with WKY control rats. BBB TJ and ion transporter proteins, known to contribute to edema and fluid volume changes in the brain, show differential protein expression patterns during hypertension development. Western blot analysis of TJ protein zonula occludens-2 (ZO-2) showed decreased expression, while ion transporter, Na(+)/H(+) exchanger 1 (NHE-1), was markedly increased in hypertensive SHR. Expression of TJ proteins ZO-1, occludin, actin, claudin-5, and Na(+)-K(+)-2Cl(-) cotransporter remain unaffected in SHR compared with control. Selective inhibition of NHE-1 using dimethylamiloride significantly attenuated ischemia-induced infarct volume in hypertensive SHR following MCAO, suggesting a novel role for NHE-1 in the brain in the regulation of ischemia-induced infarct volume in SHR.  相似文献   

4.
Protein kinase C activities in the brain tissue of spontaneously hypertensive rats (SHR) and normotensive control rats (WKY) were studied. Protein kinase C activity in SHR was found to be 35% higher than that in normotensive control rats. It is suggested that the increase in protein kinase C activity is involved in the mechanism of membrane alterations in primary hypertension.  相似文献   

5.
Protein kinase C activity in the lysate of erythrocytes of patients with essential hypertension (EH) and spontaneously hypertensive rats (SHR) was found to be increased by 1.6-2.0 times as compared with normotensive controls. Membrane cytoskeleton alterations observed in the erythrocytes of patients with EH and SHR were revealed in decreased average erythrocyte volume, increase of cup-shaped cell formation, and increase of basal phosphorylation of band 4.9 protein. In addition, the rate of Na(+)-H+ exchange in erythrocytes of EH patients and SHR was increased by 1.9-fold. In vitro treatment of erythrocytes of healthy donors and Wistar-Kyoto rats (WKY) with protein kinase C activator (12-O-tetradecanoylphorbol-13-acetate) leads to similar changes of cell shape, cell volume, band 4.9 protein phosphorylation and Na(+)-H+ exchange, as well as to an increase of diS-C3-(5) fluorescence. It may be assumed that alterations of these parameters revealed in primary hypertension are caused by increased activity of protein kinase C.  相似文献   

6.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

7.
The brain uptake and brain to blood efflux transport of (14)C-GABA were studied in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats using 20 min bilateral in situ brain perfusion in rats anesthetized using urethane. The volume of distribution (Vd) of (14)C-GABA into cerebrospinal fluid (CSF) and brain regions (cortex, diencephalon, cerebellum, and brain stem) was significantly greater in SHR than in the corresponding regions in WKY rats (p<0.05). The estimated Vd value of (14)C-GABA in CSF of SHR was 3.4 fold greater than that in WKY. Also compared to WKY, the Vd of (14)C-GABA into cerebellum and cortex of SHR was 15.3 fold and 19.4 fold greater, respectively. Although the study of blood-brain barrier (BBB) integrity using (3)H-mannitol revealed increased paracellular permeability at the brain capillaries of SHR when compared to WKY rats, this was found to be only partially responsible for the increased (14)C-GABA uptake. The study of brain to blood efflux transport of (14)C-GABA (after loading of brain with (14)C-GABA by vascular perfusion) revealed that the half-time of elimination was significantly shorter in SHR (5.35+/-0.66 min) than in WKY rats (14.83+/-1.94 min), (p<0.001). HPLC analysis revealed that GABA concentrations in brain extracts and CSF of SHR were similar to those in WKY rats (p>0.05). The faster efflux in SHR might be, at least partially, responsible to compensate for increased uptake of this neurotransmitter and to preserve the protective function of BBB towards GABA. The protective function of the BCSFB towards GABA appears to be also preserved, since systemic infusion of GABA within a wide range of administered doses (0.004-5.00 mg/kg) produced an increase in GABA CSF concentration from around 0.5 microM to only 11 microM, and the obtained pattern of CSF GABA concentrations under these conditions did not differ between SHR and WKY rats, as revealed by HPLC.  相似文献   

8.
To identify the new targets for hypertension, we analyzed the protein expression profiles of aortic smooth muscle in spontaneously hypertensive rats (SHR) of various ages during the development of hypertension, as well as in age‐matched normotensive Wistar–Kyoto (WKY) rats, using a proteomic analysis. The expressions of seven proteins were altered in SHR compared with WKY rats. Of these proteins, NADH dehydrogenase 1α, GSTω1, peroxi‐redoxin I and transgelin were upregulated in SHR compared with WKY rats. On the other hand, the expression of HSP27 and Ran protein decreased in SHR. The diminution of dihydrobiopterin reductase, an enzyme located in the regeneration pathways of tetrahydrobiopterin (BH4), was also prominent in SHR. The results from a PCR analysis revealed that the expression of BH4 biosynthesis enzymes – GTP cyclohydrolase‐1 and sepiapterin reductase – decreased and increased, respectively, in SHR compared with WKY rats. The level of BH4 was less in aortic strips from SHR than from WKY rats. Moreover, treatment with BH4 inhibited aortic smooth muscle contraction induced by serotonin. These results suggest that the deficiency in BH4 regeneration produced by diminished dihydrobiopterin reductase expression is involved in vascular disorders in hypertensive rats.  相似文献   

9.
10.
Apoptosis is a highly conserved process that plays an important role in controlling tissue development, homeostasis, and architecture. Dysregulation of apoptosis is a hallmark of numerous human pathologies including hypertension. In the present work we studied the effect of hypertension on apoptosis and the expression of several apoptotic signaling and/or regulatory proteins in four functionally and metabolically distinct muscles. Specifically, we examined these markers in soleus, red gastrocnemius, white gastrocnemius, and left ventricle (LV) of 20-wk-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Compared with WKY rats SHR had a significantly greater heart weight, LV weight, and mean arterial pressure. In general, SHR skeletal muscle had increased Bax protein, procaspase-3 protein, caspase-3 activity, cleaved poly(ADP-ribose) polymerase protein, and DNA fragmentation as well as decreased Bcl-2 protein and a lower Bcl-2-to-Bax ratio. Subcellular distribution studies demonstrated increased levels of apoptosis-inducing factor protein in cytosolic or nuclear extracts as well as elevated nuclear Bax protein in SHR skeletal muscle. Moreover, heat shock protein 70 in red gastrocnemius and soleus was significantly correlated to several apoptotic factors. With the exception of lower heat shock protein 90 levels in SHR no additional differences in any apoptotic markers were observed in LV between groups. Collectively, this report provides the first evidence that apoptotic signaling is altered in skeletal muscle of hypertensive animals, an effect that may be mediated by both caspase-dependent and -independent mechanisms. This proapoptotic state may provide some understanding for the morphological and functional abnormalities observed in skeletal muscle of hypertensive animals.  相似文献   

11.
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.  相似文献   

12.
In Dahl salt-sensitive (S) and salt-resistant (R) rats, and spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats, at 5-6 wk of age, a cannula was placed in the cisterna magna, and cerebrospinal fluid (CSF) was withdrawn continuously at 75 microl/12 h. CSF was collected as day- and nighttime samples from rats on a regular salt intake (0.6% Na+; R-Na) and then on a high salt intake (8% Na+; H-Na). In separate groups of rats, the abdominal aorta was cannulated and blood pressure (BP) and heart rate (HR) measured at 10 AM and 10 PM, with rats first on R-Na and then on H-Na. On H-Na, CSF [Na+] started to increase in the daytime of day 2 in Dahl S rats and of day 3 in SHR. BP and HR did not rise until day 3 in Dahl S rats and day 4 in SHR. In Dahl R and WKY rats, high salt did not change CSF [Na+], BP, or HR. In a third set of Dahl S rats, sampling of both CSF and BP was performed in each individual rat. Again, significant increases in CSF [Na+] were observed 1-2 days earlier than the increases in BP and HR. In a fourth set of Dahl S rats, BP and HR were recorded continuously by means of radiotelemetry for 5 days on R-Na and 8 days on H-Na. On H-Na, BP (but not HR) increased first in the nighttime of day 2. In another set of Dahl S rats, intracerebroventricular infusion of antibody Fab fragments binding ouabain-like compounds (OLC) with high affinity prevented the increase in BP and HR by H-Na but further increased CSF [Na+]. Finally, in Wistar rats on H-Na, intracerebroventricular infusion of ouabain increased BP and HR but decreased CSF [Na+]. Thus, in both Dahl S and SHR on H-Na, increases in CSF [Na+] preceded the increases in BP and HR, consistent with a primary role of increased CSF [Na+] in the salt-induced hypertension. An increase in brain OLC in response to the initial increase in CSF [Na+] appears to attenuate further increases in CSF [Na+] but at the "expense" of sympathoexcitation and hypertension.  相似文献   

13.
Evidence implicates pivotal roles for parathyroid hormone-related protein (PTHrP) in stimulating cell growth and differentiation, placental calcium transport, and placental vasodilatation. As spontaneously hypertensive rat (SHR) fetuses are growth restricted compared with those of its normotensive control, the Wistar Kyoto (WKY) rat, we examined intrauterine PTHrP and total and ionic calcium concentrations in these rats. Fetal plasma PTHrP concentrations, but not total calcium concentrations, were lower in the SHR compared with WKY (P < 0.05). SHR placental concentrations of PTHrP were lower than in WKY (P < 0.03) and failed to show the increase observed in WKY near term (P < 0.05). PTHrP concentrations in amniotic fluid from SHR were not raised near term and were lower compared with WKY (P < 0.0005). The increased ionic calcium concentrations in amniotic fluid in the WKY near term (P < 0.05) were not detected in the SHR. Thus SHR fetal plasma, placental, and amniotic fluid PTHrP concentrations were reduced and associated with fetal growth restriction. We suggest that PTHrP may play a role in the etiology of both growth restriction during pregnancy and hypertension later in life.  相似文献   

14.
Hypertension is a systemic disorder affecting numerous physiological processes throughout the body. As non-alcoholic fatty liver disorder (NAFLD) is a common comorbidity of hypertension in humans, we hypothesized that molecular hepatic physiology would be altered in a model of genetic hypertension. Despite the broad use of the spontaneously hypertensive rat (SHR) model, little is known regarding how hypertension influences hepatic function under basal conditions. In order to determine whether hypertension induces changes in the hepatic protein expression suggestive of early stages of NAFLD, we compared the whole tissue proteome of livers from SHR and Wistar Kyoto (WKY) 16 week old rats using 2DGE and MALDI-TOF MS. Fifteen proteins were identified that display different levels of expression between the SHR and WKY livers: 50% of proteins have mitochondrial or anti-oxidant functions while 20% are involved in lipid metabolism. Quininoid dihydropterin reductase, sulfite oxidase, and glutathione-S-transferase mu 1 were all identified as either undergoing a difference in post-translation modification or a difference in protein abundance in SHR compared to WKY livers. As oxidative stress is a well described component of both NAFLD and hypertension in SHR, the identification of novel changes in protein expression provides possible mechanisms connecting these two pathologies in humans.  相似文献   

15.
Arteries undergo remodeling as a consequence of increased wall stress during hypertension. However, the molecular mechanisms of the vascular remodeling are largely unknown. Proteomics is a powerful tool to screen for differentially expressed proteins, but little effort was made on vascular disease research, especially on hypertension. In the present study, the differentially expressed proteins in aortas from 18-week-old spontaneously hypertensive rats (SHR) and their normotensive counterpart, Wistar Kyoto rats (WKY), were examined by two-dimensional electrophoresis (2-DE). We found 50 proteins to be differentially expressed, among which 27 were highly or only expressed in SHR and 23 in WKY. Using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) and online data search, nine proteins, including Rho GDP dissociation inhibitor alpha (RhoGDIalpha), were identified with high confidence. Further, the upregulation of RhoGDIalpha was verified at both mRNA and protein level in SHR. In addition, when cultured vascular smooth muscle cells (VSMCs) from aortas of SHR and WKY were treated with angiotensin II (Ang II) and antagonist of angiotensin II type I (AT(1)) receptor, L158809, respectively, RhoGDIalpha was upregulated by Ang II and downregulated by L158809 in VSMCs of SHR. These results demonstrate that vascular remodeling results in significant alterations in the protein expression profile of the aorta during hypertension and suggest that the upregulation of RhoGDIalpha in hypertension is induced by Ang II via AT(1) receptor.  相似文献   

16.
According to current concepts, hypertension and hyperlipidemia cause vascular damage that leads to a hypercoagulative state. In this study, we investigated whether spontaneously hypertensive and hyperlipidemic rats (SHHR) can be a useful experimental model for complications in combined hypertension and hyperlipidemia, by comparing coagulative and fibrinolytic activities in SHHR with those in spontaneously hypertensive rats (SHR) and spontaneously hyperlipidemic rats (HLR). We measured coagulation and fibrinolysis markers in plasma and levels of fibrinogen and prothrombin mRNA in livers of eight-month-old male Wistar Kyoto rats (WKY), Sprague-Dawley rats (SD), SHR, HLR and SHHR. The plasma levels of fibrinogen in SHR, HLR and SHHR were significantly higher than those in WKY and SD, and were highest in SHHR. Higher plasma levels of antithrombin III and plasminogen were detected in increasing order in SHR, HLR and SHHR as compared to those in WKY and SD. Hepatic mRNA expressions of fibrinogen chains and prothrombin were enhanced in SHR, HLR and SHHR, resulting in increased plasma fibrinogen levels in SHHR. These results suggest that hypertension and hyperlipidemia can each cause hypercoagulation, with hyperlipidemia being a stronger factor than hypertension. Since a greater hypercoagulative state is a complication of combined hypertension and hyperlipidemia, the SHHR model is a good system for studying the early stage of atherosclerosis ensuing from hyperfibrinogenemia.  相似文献   

17.
Lu N  Yu HY  Wang R  Zhu YC 《生理学报》2012,64(2):142-148
Central urotensin II (UII) may participate in the regulation of cardiovascular functions by stimulating sympathy pathway. However, the central mechanism remained unknown. Recent studies have shown that brain reactive oxygen species (ROS) mediate the sympatho-excitatory effects. In the present study, we tested the hypothesis that ROS mediate central cardiovascular effects of UII. Experiments were conducted in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Immunocytochemistry, intracerebroventricular (icv) infusion and lucigenin-enhanced chemiluminescence assay were employed to detect UII receptor expression and ROS level, respectively. The following results were obtained: (1) Expressions of UII receptors of rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) were increased in SHR rats compared with WKY rats (P < 0.05). (2) UII (icv) significantly increased mean arterial pressure (MAP) (P < 0.05), and the effect of UII was significantly more pronounced in SHR rats than that in WKY rats (P < 0.05); (3) Tempol (a superoxide dismutase mimic) or Urantide (an antagonist of UII receptor) pretreatments eliminated the pressor effect of UII (P < 0.05) in SHR rats; (4) Brain superoxide level was increased in UII-treated SHR rats compared with that in cerebrospinal fluid (CSF)-treated SHR rats (P < 0.05). These results indicate that ROS mediate central cardiovascular effects of UII in SHR rats and provide evidence for a novel relationship between UII and ROS.  相似文献   

18.
In hypertension arterial wall properties do not necessarily depend on increased blood pressure alone. The present study investigates the relationship between the development of hypertension and thoracic aortic wall properties in 1.5-, 3-, and 6-mo-old spontaneously hypertensive rats (SHR); Wistar-Kyoto rats (WKY) served as controls. During ketamine-xylazine anesthesia, compliance and distensibility were assessed by means of a noninvasive ultrasound technique combined with invasive blood pressure measurements. Morphometric measurements provided in vivo media cross-sectional area and thickness, allowing the calculation of the incremental elastic modulus. Extracellular matrix protein contents were determined as well. Blood pressure was not significantly different in 1.5-mo-old SHR and WKY, but compliance and distensibility were significantly lower in SHR. Incremental elastic modulus was not significantly different between SHR and WKY at this age. Media thickness and media cross-sectional area were significantly larger in SHR than in WKY, but there was no consistent difference in collagen density and content between the strains. Blood pressure was significantly higher in 3- and 6-mo-old SHR than in WKY, and compliance was significantly lower in SHR. The findings in this study show that in SHR, in which hypertension develops over weeks, alterations in functional aortic wall properties precede the development of hypertension. The decrease in compliance and distensibility at a young age most likely results from media hypertrophy rather than a change in intrinsic elastic properties.  相似文献   

19.
Instrumental conditioning techniques were used to obtain objective evidence of differences in behavioral arousal between the spontaneously hypertensive rat (SHR) and the normotensive ancestral Wistar Kyoto (WKY) strain. Subjective emotionality ratings previously indicated that the genetically hypertensive rats were more active and aggressive than their normotensive cousins. In a lengthy series of operant conditioning sessions using a small number of adult female SHR and WKY rats, hyperarousal in the SHR was confirmed by their significantly higher response outputs on either response contingent or time contingent schedules of reinforcement. Conditioned emotionality tests during this series of experiments also suggested hyperarousal and aggressiveness in the SHR, since the fear-conditioned stimulus suppressed bar-pressing in the SHR much less than in the WKY. Further experiments with young prehypertensive SHR rats provided the same evidence of hyperresponsivity in the SHR compared to the WKY strain. Furthermore, these young SHR failed to develop hypertension by the end of the study (14 weeks of age), while their nonconditioned SHR cousins had become clearly hypertensive by the same age. This suggests that factors related to the conditioning methods modified the development of high blood pressure in this animal model of essential hypertension.  相似文献   

20.
The role of endothelin (ET-1) in mediating the development of blood pressure was investigated in the spontaneously hypertensive (SHR) rat using the Wistar-Kyoto (WKY) rat as the normotensive control. The following were characterized in both rat strains: age-dependent changes in mean arterial blood pressure (MAP), tissue (blood, lung, heart, and kidney) levels of immunoreactive ET-1 like related peptides (ET-1RP), aortic ring responses to ET-1, and specific high-affinity tissue (lung, atrium, ventricle, aorta, and kidney) binding sites for 125I-labelled ET-1. Commencing at age 10 weeks through to 12 weeks, SHR rats but not WKY rats developed a significant increase in MAP (from 152 +/- 7 to 189 +/- 3 mmHg) (1 mmHg = 133.32 Pa). However, in both WKY and SHR rats immunoreactive levels of ET-1RP increased (100 and 80%, respectively) throughout the same measurement period. The potency of ET-1 to contract aortic rings from SHR rats was slightly but not significantly greater than that for aortic rings from WKY rats, although aortic rings from SHR rats contracted in the presence of 0.5 nM ET-1, while those from WKY rats did not. The levels of immunoreactive ET-1RP were significantly reduced (32%) in the kidney and unchanged in the heart and lung of SHR rats compared with WKY rats. Specific 125I-labelled ET-1 binding sites displayed an increase and a significant decrease (24%) of density in the atrium and ventricle, respectively, a significant increase (31%) of affinity in the lung, and were unchanged in the kidney and aorta of SHR rats compared with WKY rats following the development of hypertension. The lack of a correlation between circulating levels of immunoreactive ET-1RP and the development of hypertension coupled with a lack of significant differences in vascular reactivity suggest that ET-1 is not the sole mediator of hypertension in this animal model. However, the tissue-specific changes in immunoreactive ET-1RP and 125I-labelled ET-1 binding sites suggest that ET-1 may be a partial mediator of hypertension and is subject to compensatory changes in response to the increased total peripheral resistance in SHR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号