首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sustained high voltage-activated (HVA), nifedipine- and cadmium- sensitive calcium current and a sustained calcium action potential (AP) were recorded from horizontal cells isolated from catfish retina. pH indicator dyes showed that superfusion with NH4Cl alkalinized these cells and that washout of NH4Cl or superfusion with Na-acetate acidified them. HVA current was slightly enhanced during superfusion of NH4Cl but was suppressed upon NH4Cl washout or application of Na- acetate. When 25 mM HEPES was added to the patch pipette to increase intracellular pH buffering, the effects of NH4Cl and Na-acetate on HVA current were reduced. These results indicated that intracellular acidification reduces HVA calcium current and alkalinization increases it. Sustained APs, recorded with high resistance, small diameter microelectrodes, were blocked by cobalt and cadmium and their magnitude varied with extracellular calcium concentration. These results provide confirmatory evidence that the HVA current is a major component of the AP and indicate that the AP can be used as a measure of how the HVA current can be modified in intact, undialyzed cells. The duration of APs was increased by superfusion with NH4Cl and reduced by washout of NH4Cl or superfusion with Na-acetate. The Na-acetate and NH4Cl washout- dependent shortening of the APs was observed in the presence of intracellular BAPTA, a calcium chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched saline. These findings provide supportive evidence that intracellular acidification may directly suppress the HVA calcium current in intact cells. Intracellular pH changes would thereby be expected to modulate not only the resting membrane potential of these cells in darkness, but calcium- dependent release of neurotransmitter from these cells as well. Furthermore, this acidification-dependent suppression of calcium current could serve a protective role by reducing calcium entry during retinal ischemia, which is usually thought to be accompanied by intracellular acidosis.  相似文献   

2.
Feng X  Peeters TL  Tang M 《Peptides》2007,28(3):625-631
Motilin and motilin receptors have been found in most regions of the brain, including the amygdala, one of the most important parts of the limbic system. Our previous study found that administration of motilin in the hippocampus stimulates gastric motility. We now explore the effect of motilin in the amygdala on gastric motility. In conscious rats, gastric motility was recorded after microinjection of motilin, motilin receptor antagonist (GM-109) or a mixture of the two into the basomedial amygdala nucleus (BMA). In anesthetized rats the changes of spontaneous discharges of gastric distention sensitive neurons (GDSN) in the BMA were recorded after intracerebroventricular (i.c.v.) microinjection of motilin or GM-109. In conscious rats the amplitude of gastric contractions increased dose-dependently after microinjection of motilin in the BMA, and decreased after microinjection of GM-109. The excitatory or inhibitory effects induced by motilin or GM-109 alone, were weakened by microinjection of a mixture solution of both. The spontaneous discharge frequency of gastric distention excitatory neuron (GDEN) was mainly inhibited by i.c.v. microinjection of motilin but excited by GM-109. In contrast, the spontaneous discharge frequency of gastric distention inhibitory neuron (GDIN) was mainly excited by motilin, but inhibited by GM-109. Our findings suggest that motilin may regulate gastric motility by modulating neural pathways in the BMA.  相似文献   

3.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

4.
The inhibitory effect of clonidine (non-selective alpha2-adrenoceptor agonist) and oxymetazoline (alpha2A-adrenoceptor selective agonist) was compared on basal and stimulated gastric motor activity (gastric tone and contractions) using the balloon method in the rat. It was shown that oxymetazoline (0.2-1.7 micromol/kg, i.v.) decreased the basal motility, while clonidine (1.9-3.8 micromol/kg, i.v.) failed to affect it. When motility was stimulated centrally by insulin (5 IU/rat, i.v.), both clonidine (1.9-3.8 micromol/kg, i.v.) and oxymetazoline (0.1-3.4 micromol/kg, i.v.) inhibited the gastric motor activity. However, while the effect of clonidine was antagonized by the non-selective alpha2-adrenoceptor antagonist yohimbine (5 micromol/kg, i.v.) and the alpha2A-adrenoceptor selective antagonist BRL 44408 (3 micromol/kg, i.v.), the effect of oxymetazoline was only partially affected. Prazosin (alpha1- and alpha2B-adrenoceptor antagonist, 0.07-0.28 micromol/kg, i.v.) also failed to reverse the effect of oxymetazoline. Furthermore, when gastric motility was stimulated peripherally by activation of postsynaptic cholinergic muscarinic receptors by the combination of carbachol (0.14 micromol/kg, i.v.) and hexamethonium (37 micromol/kg, i.v.), clonidine (3.8 micromol/kg, i.v.) failed to affect the increased motor activity, however, oxymetazoline (0.8-3.4 micromol/kg, i.v.) exerted a pronounced inhibition. These results suggest that different mechanisms may be involved in the inhibitory effect of clonidine and oxymetazoline; while clonidine reduces the gastric motility by activation of presynaptic alpha2-adrenoceptors, postsynaptic component in the effect of oxymetazoline has also been raised.  相似文献   

5.
Since the few data available concerning the effect of acid/base disturbances on renal amino acid reabsorption were conflicting, and there were sound theoretical reasons for an effect, we have studied the clearance of endogenous amino acids in the rat in vivo under control conditions and after induction of either metabolic acidosis or alkalosis by administration of NH4Cl or NaHCO3, respectively. The effectiveness of treatment was assessed by examination of plasma and urinary levels of HCO3, Cl, Na and K. It was found that the renal clearance of amino acids, measured during acidosis or alkalosis, did not differ from those found under control conditions, the majority of values being less than 1% of the glomerular filtration rate. Thus, the amino acid reabsorptive mechanism appears unaffected by changes in the pH of the glomerular filtrate and/or by changes in tubular hydrogen ion secretion which would accompany such disturbances. These data are thus in agreement with findings during acidosis in man and in both acidosis and alkalosis in the dog. The findings are contrary to earlier reports from in vitro studies in the rat, and suggest the presence of severe functional impairment in the isolated perfused kidneys used in these earlier studies where very large changes in amino acid clearance were obtained.  相似文献   

6.
We have previously reported that KW-5139, a motilin analogue, evokes gastrointestinal motor stimulating action in the post-operative period as well as in the recovered period of conscious dogs. In this report, we compared the mechanisms of the KW-5139-induced contractions in the post-operative period with those in the recovered period using beagle dogs implanted force transducers in the gastric antrum, duodenum, jejunum, ileum and colon. In addition, we also examined the mechanisms of the prostaglandin F2alpha-induced contractions in both periods. The gastric contractions evoked by KW-5139 (0.5 microg kg(-1), i.v.) were inhibited by the pretreatment of ondansetron (0.1 mg kg(-1), i.v.), a 5-HT3 receptor antagonist, in the recovered period, but were not affected in the post-operative period even by higher doses of ondansetron (0.3-1 mg kg(-1), i.v.). The KW-5139-induced contractions in the small and large intestine were not inhibited by ondansetron in the both periods. The contractions evoked by KW-5139 (0.5 microg kg(-1), i.v.) in the gastric antrum, duodenum, jejunum and colon were significantly inhibited by the pretreatment with atropine (0.05 mg kg(-1), i.v.), a muscarinic receptor antagonist, in the recovered period as same extent as in the post-operative period. The contractions evoked by prostaglandin F2alpha (50 microg kg(-1), i.v.) in the any recording sites were not affected by the pretreatment with ondansetron (0.1 mg kg(-1), i.v.) in the recovered period. On the other hand, atropine (0.05 mg kg(-1), i.v.) tended to inhibit the gastric and colonic contractions. These effects of ondansetron and atropine on the prostaglandin F2alpha-induced contractions were not different between in the post-operative and recovered periods. The present results indicate that 5-HT3 receptors are involved in the KW-5139-induced motor stimulating action in the recovered period but not in the post-operative period. The mechanisms of the alteration were discussed.  相似文献   

7.
目的 :探讨细胞内 pH(pHi)改变对心肌细胞内Ca2 浓度 ([Ca2 ]i)和细胞长度的影响。方法 :心肌细胞内分别灌注 2 0mmol/L丙酸钠和 15mmol/LNH4Cl,建立细胞内酸碱中毒模型。荧光指示剂indo 1和SNARF 1载入大鼠心肌细胞内 ,用荧光显微镜同时测定心肌 [Ca2 ]i、pHi 和细胞长度。结果 :细胞内酸中毒早期 ,收缩期和舒张期[Ca2 ]i 轻度增加 ,细胞缩短 (CS)降低 ,细胞长度增加 ,心肌纤维对Ca2 的敏感性和CS/ [Ca2 ]i 降低 (P <0 .0 1) ;碱中毒时 ,收缩期和舒张期 [Ca2 ]i 均较对照组降低 ,CS增加 ,细胞长度变短 ,心肌纤维对Ca2 的敏感性和CS/[Ca2 ]i 增加 (P <0 .0 1)。结论 :酸中毒早期 [Ca2 ]i 和细胞长度增加 ,碱中毒时 [Ca2 ]i和细胞长度降低。酸、碱中毒对Ca2 敏感性的影响并非线性关系 ,即单位 pHi变化时酸中毒对敏感性的影响较碱中毒小  相似文献   

8.
In order to better understand the basis for the euryhalinity of the flounder, Platichthys flesus , which tolerates large variations in water salinity, experiments have been designed to characterize the time course of extracellular ionic and acid-base adjustments under hypo- or hyperosmotic conditions. Abrupt transfer from sea water (SW) to fresh water (FW) provokes a transient decrease in the plasma osmolality (Posm) and a concomitant transient metabolic alkalosis (whole blood pH 7.78 in SW and 8.04 five days after FW transfer) associated with a marked, persistent hypercapnia. After 33 days in FW, Posm and whole blood pH are not significantly different from those in SW, but whole blood Pco2 and plasma bicarbonate concentration are always higher than SW values. Opposite transitory fluctuations, i.e. a metabolic acidosis associated with a respiratory alkalosis, occur when flounder long-acclimated to FW are again exposed to SW. The mechanisms involved in these salinity-dependent acid-base disturbances are rather complex and remain to be elucidated. These observations attest to the importance of the extracellular acid-base changes that may be (i) linked to extracellular anisosmotic regulation and/or to cellular metabolic adjustments, and (ii) compensated partially by ventilatory adjustments.  相似文献   

9.
M R Furtado 《Life sciences》1987,41(1):95-102
Using helical strips of isolated rabbit aortas it was studied the influence of a brief exposure to NH4Cl as well as of the subsequent washout phase. These changes did not affect the resting aortic tension but modified the responsiveness of the strip precontracted by norepinephrine (NE): in the presence of NH4Cl there occurred relaxation, and when ammonia was washed out the strip overcontracted transiently. All this was observed in the absence of external pH (pHe) changes. It is postulated that intracellular (IC) perturbations caused by ammonia led to IC alkalosis which was followed by an IC acidosis when the NH4Cl was removed from the preparation. If this assumption proves to be correct, the IC acid-base status--the intracellular pH (pHi)--could be regarded as a modulator of NE-induced contractility of vascular smooth muscle.  相似文献   

10.
Systematic data are not available with regard to the anticipated appropriate responses of arterial PCO2 to primary alterations in plasma bicarbonate concentration. In the present study, we attempted to rigorously characterize the ventilatory response to chronic metabolic acid-base disturbances of graded severity in the dog. Animals with metabolic acidosis produced by prolonged HCl feeding and metabolic alkalosis of three different modes of generation, i.e., diuretics (ethacrynic acid or chlorothiazide), gastric drainage, and administration of deoxycorticosterone acetate (alone or in conjunction with oral sodium bicarbonate), were examined. The results indicate the existence of a significant and highly predictable ventilatory response to chronic metabolic acid-base disturbances. Moreover, the magnitude of the ventilatory response appears to be uniform throughout a wide spectrum of chronic metabolic acid-base disorders extending from severe metabolic acidosis to severe metabolic alkalosis; on average, arterial PCO2 is expected to change by 0.74 Torr for a 1-meq/l chronic change in plasma bicarbonate concentration of metabolic origin. Furthermore, the data suggest that the ventilatory response to chronic metabolic alkalosis is independent of the particular mode of generation.  相似文献   

11.
The effects of intracisternal (i.c.) and intravenous (i.v.) administration of corticotropin-releasing factor (CRF) on gastric contractility stimulated by i.c. injection of the TRH analog RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro-NH2], 2-deoxy-D-glucose (2DG) and i.v. infusion of carbachol were evaluated in rats under urethane anesthesia. Gastric contractility was monitored using acutely implanted extraluminal force transducers sutured to the corpus of the stomach. I.c. injection of CRF (6.3-210 pmol) resulted in a dose dependent suppression of gastric contractility stimulated by RX77368 (260 pmol) and 2DG (6 mg). Gastric inhibitory response to i.c. CRF was rapid in onset and lasted at least 45 min. Carbachol (200 mg/kg/h)-induced stimulation of gastric contractility was not modified by i.c. injection of CRF. The stimulation of contractility caused by both i.v. carbachol and i.c. 2DG were completely inhibited by atropine (1 mg/kg, i.v.). CRF (210 pmol) given i.v. suppressed RX77368-stimulated gastric contractions, but was less than 1/10 as potent as administered i.c. I.v. CRF (210 pmol) did not alter 2DG- or carbachol-induced gastric contractions. These results demonstrate that the i.c. administration of CRF acts within the brain to inhibit gastric contractility elicited by vagus-dependent mechanisms.  相似文献   

12.
In most cyclic females, prostaglandin F(2alpha) (PGF(2alpha)) triggers a uterine motility response resembling that of oxytocin (OT). To determine if PGF(2alpha) is a uterokinetic substance in the cycling mare, uterine motility was measured by intrauterine balloon technique in 12 conscious, normally cyclic mares. After 60 min of saline infusion, continuous intravenous (i.v.) infusion with OT (1 i.u./min) was followed by PGF(2alpha) (200 mug/min) for 60 min each. The experiment was repeated 3 wk later except with PGF(2alpha) preceeding OT. A second group of mares was administered OT (60 i.u.) either i.v., intramuscularly (i.m.), or intrauterinely (i.u.). Plasma samples were studied for progesterone concentration. Control uterine motility for the first group of mares was (mean +/- SEM) 545.83 +/- 45.10 mm(2). Significant (P<0.05) elevation in uterine motility was recorded for OT (1118.60 +/- 70.56 mm(2)) regardless if PGF(2alpha) preceded OT infusion or vice-versa. No significant difference (P>0.05) was seen in motility after PGF(2alpha) (423.33 +/- 31.12 mm(2)) infusion. The uterokinetic effect of OT was greatest when OT was administered i.v. (1696.50 +/- 195.46 mm(2)) followed by i.m. (819.82 +/- 39.96 mm(2)), and it was least effective when administered i.u. (607.83 +/- 21.56 mm(2)) as compared to control uterine motility (279.78 +/- 22.33 mm(2)). Skin electrical resistance values rose from 0 to 2000 ohms with PGF(2alpha) infusion (but not with OT), indicating that PGF(2alpha) was bioactive. It was concluded that PGF(2alpha) was not a uterokinetic substance in the cyclic mare.  相似文献   

13.
Previous investigators in our laboratory have demonstrated that peptide YY (PYY), a putative gut hormone, exerts a potent emetic effect when administered intravenously to conscious dogs. The current study was carried out to examine the effects of an emetic dose of PYY on cardiovascular status, splanchnic blood flow distribution (estimated using 15 micron microspheres) and small intestinal motility in anesthetized dogs. PYY, infused i.v. at a dose of 25 pmol/kg/min led to a localized significant reduction in small intestinal muscularis externa blood flow both 15 and 30 min after the start of PYY infusion in both jejunum and ileum. This decreased muscularis perfusion was not accompanied by any significant change in whole gut wall blood flow and was explained on the basis of an observed significant redistribution of blood flow away from the muscularis towards the mucosa/submucosa. Similar, although non-significant, effects of PYY on colonic blood flow distribution were also observed. Despite the effects on jejunum and ileum, PYY exerted minimal effects on duodenal blood flow. The decrease in ileal and jejunal muscularis blood flows was accompanied by a significant increase in the amplitude of intestinal contractions in these regions. Frequency of contractions was unaltered however. These results demonstrate that PYY infusion leads to concurrent changes in small intestinal blood flow and motility.  相似文献   

14.
It is well known that ammonium ion excretion is increased during metabolic acidosis in mammals. The purpose of this study was to determine whether we could isolate from human urine during metabolic acidosis a factor that would stimulate NH+4 and/or H+ excretion in toad urinary bladder. Extracts of urine from six human subjects collected during NH4Cl-induced acidosis were prepared. These extracts were tested for their effect on NH+4 excretion in hemibladders mounted between plastic chambers. The extracts significantly increased NH+4 excretion in the toad urinary bladder. We found no effect on H+ excretion by these extracts. This ammoniuretic activity was not present in the urine when the same individuals were in metabolic alkalosis. We conclude that during metabolic acidosis a humoral factor is present which stimulates the excretion of NH+4. The factor could act as a permease in the bladder cell or as a stimulator of an NH+4 transport system.  相似文献   

15.
Regulation of gastrointestinal function by multiple opioid receptors   总被引:3,自引:0,他引:3  
Agonist and antagonist drugs possessing selectivity for individual types of opioid receptors have been employed in vitro and in vivo to determine the mechanisms by which opioids regulate gastrointestinal functions. Selective mu opioid agonists given by intracerebroventricular (i.c.v.) injection, by intrathecal (i.t.) injection, or by peripheral (s.c. or i.v.) injection in rats or mice decreased gastrointestinal transit and motility, inhibited gastric secretion, and suppressed experimentally-induced diarrhea. Selective delta agonists, by contrast, inhibited gastrointestinal transit after i.t., but not after i.c.v. or s.c. administration. Delta agonists also did not alter gastric secretion after i.c.v. or s.c. injection. However, delta agonists exhibited antidiarrheal effects after i.c.v., i.t., or s.c. administration. Kappa agonists given i.c.v. had no effect on gastrointestinal transit in rats or mice or on gastric secretion in rats, but exhibited antidiarrheal effects in mice. The kappa agonist U-50, 488H given peripherally increased gastric acid secretion. Different types of opioid receptors in different anatomical sites influence differently gastrointestinal motility and propulsion, gastric secretion, and mucosal transport. Brain, spinal cord, enteric neural and smooth muscle opioid receptors represent chemosensitive sites for regulation of gastrointestinal function.  相似文献   

16.
The present study evaluated the role of nitric oxide in the regulation of duodenal motility and pancreatic exocrine secretion in conscious sheep. Intravenous infusions of nitric oxide synthase inhibitors, Nω-nitro-l-arginine-methyl ester (l-NAME) and Nω-nitro-l-arginine, induced clusters of duodenal contractions like phase III of migrating motor complexes and simultaneously inhibited flow rate, bicarbonate ion and enzyme outputs of pancreatic juice. The effects of l-NAME were inhibited by simultaneous infusion of l-arginine, but not altered by adrenergic blockade using a combined infusion of phentolamine and propranolol. Inhibition of the pancreatic secretion occurred in coincidence with initiation of the duodenal contractions, while the pancreatic secretion was not inhibited when the premature duodenal contractions were abolished by the l-arginine infusion. The initiation of the cluster of duodenal contractions by l-NAME was not abolished by background infusion of atropine, whereas the amplitude of contractions was significantly inhibited by atropine. These results suggest that intrinsic nitric oxide plays a crucial role in the regulation of duodenal tone and maintenance of continuous secretion by the exocrine pancreas in sheep. These results also implied that inhibition of pancreatic exocrine secretion by the nitric oxide synthase inhibitor is presumably mediated in part through the contractile effect on the duodenum. Accepted: 27 June 2000  相似文献   

17.
Neuropeptide Y (NPY), a 36-amino acid peptide abundantly expressed in the brain, has been implicated in the regulation of feeding and visceral functions. The present study was designed to investigate whether or not NPY specifically regulates duodenal motility. The manometric method was used to measure duodenal motility in conscious, freely moving rats. The rat duodenum showed phasic contractions mimicking the migrating motor complex in the fasted state that were replaced by irregular contractions after the ingestion of food. NPY powerfully affected the contractile activity after intracerebroventricular (i.c.v.) administration, changing fed (postprandial) patterns into phasic contractions characterized as fasted (interdigestive) patterns. This effect was mediated via receptors with pharmacological profiles similar to rat Y(2) and Y(4) receptors, although neither Y(1) nor Y(5) agonists had any effects on motility despite potent feeding-stimulatory effects. Immunoneutralization with anti-NPY antiserum administered i.c.v. abolished fasted patterns and induced fed-like motor activities. An i.c.v. dose of peptide YY produced a different effect from NPY, with increase in the motor activities of both fed and fasted patterns. These results indicate that fasted and fed motor activities are regulated processes and that NPY induces fasted activity through Y(2), and possibly Y(4), receptors, which may represent an integrated mechanism linked to the onset of feeding behavior.  相似文献   

18.
19.
P C Tullson  L Goldstein 《Enzyme》1987,37(3):127-133
Glutamine, the principal source of urinary ammonia, can be fully oxidized or converted to glucose by the kidney. To be oxidized, the carbon skeleton of glutamine must enter the TCA cycle as acetyl CoA formed by pyruvate dehydrogenase (PDH). The purpose of this study was to measure kidney PDH activity (active and total) following acute acid-base changes in vivo. PDHa activity was elevated after acute metabolic alkalosis and acidosis and unchanged by respiratory acidosis. Kidney ADP/ATP, CoA/acetyl CoA and calculated mitochondrial NAD+/NADH ratios were also determined and revealed an increase in kidney ADP/ATP with alkalosis but no changes during metabolic and respiratory acidosis.  相似文献   

20.
The aim of this study was to clarify if small doses of neurotensin (2.5 and 5.0 pmol.kg-1.min-1, i.v.) in dogs alter the postprandial motor pattern of the duodenum in comparison with the adjacent jejunum. The intestinal motor patterns were quantified by means of closely spaced strain gauge transducers and a computerized method. An acaloric viscous meal of cellulose was used to induce postprandial motility. Gastric emptying was measured radiographically. During intravenous control infusion of saline, the characteristics of duodenal and jejunal motor pattern were significantly different. The duodenum contracted at a lower rate and showed a higher incidence of stationary contractions. The lower dose (2.5 pmol.kg-1.min-1) of neurotensin showed no significant effects, whereas the higher dose (5 pmol.kg-1.min-1) significantly slowed gastric emptying and altered the motor pattern of both intestinal segments in a similar manner. It reduced the number of contractions, shortened the contraction spread, increased the incidence of stationary contractions, and decreased the incidence of propagated contractions. The alterations of motility caused enhanced mixing of luminal contents. The differences in motor patterns seen in the control state between both intestinal segments were diminished during neurotensin. Data revealed no differences in sensitivity of the duodenum and jejunum to neurotensin. Results suggest that neurotensin is one of the gastrointestinal peptides involved in regulating intestinal contractile patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号