首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Brulfert  D. Guerrier  O. Queiroz 《Planta》1982,154(4):332-338
Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC phosphoenolpyruvate carboxylase (EC 4.1.1.31) - LD long day - SD short day  相似文献   

2.
Two major isofunctional forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) have been separated from the leaves of Kalanchoe blossfeldiana Poelln. Tom Thumb by acrylamide gel electrophoresis and diethylaminoethyl cellulose techniques: one of the forms prevails under long-day treatment (low crassulacean acid metabolism level), the other develops under short-day treatment (high Crassulacean acid metabolism level). Molecular weights are significantly different: 175·103 and 186·103, respectively. These results indicate that two populations of phosphoenolyruvate carboxylase are present in the plant, one of which is responsible for Crassulacean acid metabolism activity under the control of photoperiod.The Crassulacean acid metabolism appears to depend on the same endogenous clock that governs other photoperiodically controlled events (e.g. flowering). The metabolic and energetic significance of this feature is discussed. It is suggested that modification in isozymic composition could be an early step in the response to photoperiodism at the metabolic level.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - DEAE diethylaminoethyl - DTT dithiothreitol - LD long day - SD short day - BSA bovine serum albumin  相似文献   

3.
H. Schnabl 《Planta》1981,152(4):307-313
Guard cell and mesophyll cell protoplasts of Vicia faba L. were purified and separated into cytoplasmic and plastid fractions by a selective silicone-oil filtration. Before fractionation, the protoplasts were ruptured by a low speed centrifugation through a narrow-aperture nylon net placed in a plastic vial. This protoplast homogenation and subsequently the silicone-oil fractionation offer the possibility of investigating the comparatmentation of the enzymatic carboxylating (ribulose bisphosphate carboxylase EC 4.1.1.39, phosphoenolpyruvate carboxylase EC 4.1.1.31, NAD+ and NADP+ linked malate dehydrogenase EC 1.1.1.37) and decarboxylating pathways of malic (malic enzyme EC 1.1.1.40, phosphoenolpyruvate carboxykinase EC 4.1.1.32, pyruvate orthophosphate dikinase EC 2.7.9.1) which occur during the swelling and shrinking of the guard cell protoplasts. A model is proposed which describes the transport processes of malic acid during the starch-malate balance as correlated to the volume changes of the protoplasts. As the enzymes and their compartmentation in the guard cell protoplasts seem to be consistent with those of crassulacean acid metabolism (CAM) plants, the metabolism of stomata and of CAM cells is compared.Abbreviations AQ anthraquinone-2-sulfonic acid - CAM Crassulacean acid metabolism - DCPIPred 2,6-dichlorophenol-indophenol - DTT dithiothreitol - EDTA ethylendiamine tetraacetic acid - GAPDH glyceraldehyde-3-phosphate dehydrogenase - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - MDH malante dehydrogenase - MES 2(N-morpholino) ethane sulphonic acid - OAA oxaloacetic acid - PEP phosphoenolpyruvate - PSI photosystem I - KuP2 ribulose bisphosphate  相似文献   

4.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) purified from leaves of the crassulacean acid metabolism plant (Crassula argentea) was chemically modified by the specific arginyl reagent 2,3-butanedione. Modification resulted in enzyme inactivation which followed pseudo first-order kinetics. Participation of arginyl residues involved in the binding of or response to both phosphoenolpyruvate and malate, respectively, was established. Inactivation and protection studies suggest the presence of three sites involved in the binding of the substrate, phosphoenolpyruvate, the activator, glucose 6-phosphate, and the inhibitor, malate. Studies using both fluorescence measurements of binding and steady-state kinetic methods indicate that phosphoenolpyruvate can bind both to the active site and to the activator site. Evidence for stimulation of the activity of phosphoenolpyruvate carboxylase upon the binding of substrate to the activation site was provided by kinetic studies using AMP, previously shown to be a specific ligand for the activation site.  相似文献   

5.
The C(4) succulent plant Portulaca oleracea shifts its photosynthetic metabolism to crassulacean acid metabolism (CAM) after 23 d of withholding water. This is accounted by diurnal acid fluctuation, net nocturnal but not day CO(2) uptake and drastic changes in phosphoenolpyruvate carboxylase (PEPC) kinetic and regulatory properties [Lara et al. (2003) Photosynth: Res. 77: 241]. The goal of the present work was to characterize the CAM activity in leaves of P. oleracea during water stress through the study of enzymes involved in carbon fixation and carbohydrate metabolism. After drought stress, a general decrease in the photosynthetic metabolism, as accounted by the decrease in the net CO(2) fixation and in the activity of enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase, PEPC, pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxykinase and NAD-malic enzyme was observed. We also found changes in the day/night activities and level of immunoreactive protein of some of these enzymes which were correlated to night CO(2) fixation, as occurs under CAM metabolism. Based on the results obtained, including those from in situ immunolocalization studies, we propose a scheme for the possible CO(2) fixation pathways used by P. oleracea under conditions of sufficient and limiting water supply.  相似文献   

6.
D. Ritz  M. Kluge  H. J. Veith 《Planta》1986,167(2):284-291
Phyllodia of the Crassulacean acid metabolism (CAM) plant Kalanchoë tubiflora were allowed to fix 13CO2 in light and darkness during phase IV of the diurnal CAM cycle, and during prolongation of the regular light period. After 13CO2 fixation in darkness, only singly labelled [13C]malate molecules were found. Fixation of 13CO2 under illumination, however, produced singly labelled malate as well as malate molecules which carried label in two, three or four carbon atoms. When the irradiance during 13CO2 fixation was increased, the proportion of singly labelled malate decreased in favour of plurally labelled malate. The irradiance, however, did not change either the ratio of labelled to unlabelled malate molecules found in the tissue after the 13CO2 application, or the magnitude of malate accumulation during the treatment with label. The ability of the tissue to store malate and the labelling pattern changed throughout the duration of the prolonged light period. The results indicate that malate synthesis by CAM plants in light can proceed via a pathway containing two carboxylation steps, namely ribulose-1,5-bisphosphate-carboxylase/oxygenase (EC 4.1.1.39) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) which operate in series and share common intermediates. It can be concluded that, in light, phosphoenolpyruvate carboxylase can also synthesize malate independently of the proceeding carboxylation step by ribulose-1,5-bisphosphate carboxylase/oxygenase.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - TMS trimethylsilyl  相似文献   

7.
Abstract. Changes in crassulacean acid metabolism (CAM) in the leaves of Bryophyllum daigremontianum were studied comparatively under closely controlled (phytotron) and semi-natural (greenhouse) conditions utilizing measurements of natural carbon isotope composition (δ13C) of the total leaf matter. Abrupt transfer of plants from long days to short days resulted in an overall increase of CAM in mature leaves (no. 3 from the apex and older) and thus in a higher CAM level for the whole plant. Study during the course of a year in semi-natural conditions showed that a progressive increase in length of day and day night temperature differences (February ← June) activated CAM but only a passage to short days (June ← October) produced the maximum CAM. Under the experimental conditions employed, the maximum shift from the C3-type to the C4-type of metabolism was observed in plants subjected to semi-natural progressive variations in the environment, i.e. the δ13C values indicated that for plants in the greenhouse the total carbon flow entering the cells was mediated by phosphoenolpyruvate carboxylase activity.  相似文献   

8.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

9.
Using size-exclusion high-performance liquid chromatography, it is shown that phosphoenolpyruvate carboxylase from Crassula argentea, a crassulacean acid metabolism (CAM) plant, exists primarily in the form of a tetramer of a 100-kDa subunit at night and as a dimer of the same subunit during the day. The tetrameric enzyme from night leaves is not inhibited by malate, while the dimeric form from day leaves can be completely inhibited by malate. The purified day, or dimer, form of the enzyme can be converted to the tetramer by concentration and exposure to Mg2+. When thus converted, the tetramer is insensitive to malate inhibition, and is more strongly activated by glucose 6-phosphate than the dimer. The purified night, or tetramer, form is converted to the dimer by incubation for 60 min at pH 8.2. This enzyme may also be converted to the dimer by adding 1.5 mM malate to the elution buffer, but preincubation for 15 min with phosphoenolpyruvate prevents disaggregation when chromatographed with buffer containing malate. Preincubation with 1mM EDTA and subsequent chromatography with buffer containing malate shows a progressive dissociation of the tetrameric form with increasing time of preincubation. The implications of these observations for the diurnal regulation of phosphoenolpyruvate carboxylase in CAM metabolism are discussed.  相似文献   

10.
Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.Abbreviations CAM Crassulacean acid metabolism - IgG immunoglobulin G - PEP phosphoenolpyruvate To whom correspondence should be addressed  相似文献   

11.
Recent studies reveal that the intracellular localization of pyruvate,Pi dikinase (PPDK, EC 2.7.9.1) in mesophyll cells of malic enzyme (ME)-dependent Crassulacean acid metabolism (CAM) plants varies among species, occurring not only in the chloroplasts but also in the cytosol in some species. The facultative CAM plant Kalanchoë blossfeldiana accumulates PPDK in both compartments of the mesophyll cells. In this study, the patterns of accumulation of the chloroplastic and cytosolic PPDKs were investigated for K. blossfeldiana plants with different CAM activities by immunogold labeling and electron microscopy. Greater CAM activity was found in plants grown under drought conditions with short days than under well-watered conditions with long days, and in lower leaves than in higher leaves. There was a trend that plants and leaves with greater CAM activity show denser labeling for PPDK in both the cytosol and chloroplasts. However, the ratio of the density of PPDK labeling in the cytosol to that in the chloroplasts was almost constant (2.4–3.0). Higher labeling for phosphoenolpyruvate carboxylase (EC 4.1.1.31) in the cytosol was also correlated with higher CAM activity but there was almost no difference in the density of labeling for ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in the chloroplasts. These results indicate that the increase in accumulation of cytosolic PPDK is closely associated with the increase of chloroplastic PPDK during enhanced CAM expression. This suggests that both PPDKs are involved in CAM function.  相似文献   

12.
A phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.3 [EC] ) activitywas associated with, the Percoll purified chloroplasts fromKalanchoe blossfeldiana leaves performing crassulacean acidmetabolism (CAM) (plants grown under short-day conditions).Very little PEPC activity was detected in the chloroplasts whenthe plants were grown under long days, performing a C3-typephotosynthetic metabolism. The PEPC activity measured in thechloroplasts from CAM-plants was very sensitive to such effectorsas glucose-6-phosphate (G-6-P) and malate: the initial activityof PEPC in the presence of 1.2 mM PEP was 400% activated by10 mM G-6-P and was 25% inhibited by 1 mM malate. These resultsshow that the PEPC in the chloroplasts has the enzymatic characteristicsdescribed by Brulfert and Queiroz [(1982) Planta 154: 339] forPEPC extracted from CAM-performing K. blossfeldiana leaves. (Received November 1, 1985; Accepted April 25, 1986)  相似文献   

13.
Umbilicus rupestris (pennywort) switches from C3 photosynthesis to an incomplete form of crassulacean acid metabolism (referred to as 'CAM-idling') when exposed to water stress (drought). This switch is accompanied by an increase in the activity of phosphoenolpyruvate carboxylase. This enzyme also shows several changes in properties, including a marked decrease in sensitivity to acid pH, a lower Km for phosphoenolpyruvate, very much decreased sensitivity to the allosteric inhibitor malate, and increased responsiveness to the allosteric effector glucose 6-phosphate. The Mr of the enzyme remains unchanged, at approx. 185 000. These changes in properties of phosphoenolpyruvate carboxylase are discussed in relation to the roles of the enzyme in C3 and in CAM plants.  相似文献   

14.
Summary The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.  相似文献   

15.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

16.
Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of 13C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in 13C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in 13C. After photoperiodic change (long daysshort days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4) present in the biochemical fractions were calculated from their 13C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.Abbreviations CAM crassulacean acid metabolism - CAM pathway pathway with malate accumulation by -carboxylation of PEP, arising from glycolysis of starch (starch-malate sequence) - C3-metabolism metabolism with primary carbon fixed by the Calvin and Benson pathway (C3-origin) - C4-metabolism metabolism with primary carbon fixed by the Hatch and Slack pathway (C4-origin) - C3-pathway pathway with RuBPC activity and the Calvin and Benson pathway, irrespective of the CO2-source, atmospheric or reuptake of the C4 from malate - 13C()=(Rsample-RPDR)103/RPDB where PDB Pee Dee belemnite (belemnite from the Pee Dee formation, South Carolina) and R=13C/12C - D isotope discrimination - PEP phosphoenolpyruvate - PEPC (EC 4.1.1.31) PEP carboxylase - PGA phosphoglyceric acid - Py.di-PK (EC 2.7.9.1) pyruvate, Pi-dikinase - RuBP ribulose bisphosphate - RuBPC (EC 4.1.1.39) RuBP carboxylase - SD short days - LD long days  相似文献   

17.
The temporal co-ordination of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc) activities by Mesembryanthemum crystallinum L. in C(3) and crassulacean acid metabolism (CAM) modes was investigated under conventional light-dark (LD) and continuous light (LL) conditions. When C(3) , net CO(2) assimilation rate increased during each subjective night under LL with maximum carboxylation unrelated to Rubisco activation state. The CAM circadian rhythm of CO(2) uptake was more pronounced, with CO(2) assimilation rate maximal towards the end of each subjective night. In vivo and in vitro techniques were integrated to map carboxylase enzyme regulation to the framework provided by CAM LL gas exchange activity. Rubisco was activated in vitro throughout each subjective dark period and consistently deactivated at each subjective dawn, similar to that observed at true dawn in constitutive CAM species. Instantaneous carbon isotope discrimination showed in vivo carboxylase co-dominance during the CAM subjective night, initially by Rubisco and latterly C(4) (PEPc), despite both enzymes seemingly activated in vitro. The circadian rhythm in titratable acidity accumulation was progressively damped over successive subjective nights, but maintenance of PEPc carboxylation capacity ensures that CAM plants do not become progressively more 'C(3) -like' with time under LL.  相似文献   

18.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

19.
An NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) was purified and characterized from leaves of Aptenia cordifolia L. f. (Schwant). This plant performs crassulacean acid metabolism (CAM), as indicated by: (a) elevated levels of phosphoenolpyruvate carboxylase (PEPC) and NAD(P) malic enzyme; (b) regulation of PEPC compatible with its function during the night; (c) characteristic day/night changes in titratable acidity; and (d) gas exchange profile consistent with that shown by CAM plants. These features remained unchanged by water availability or salt stress, suggesting constitutive CAM. The purified MDH showed a subunit molecular mass of 39.4 kDa, a native mass of 83 kDa (dimer) and a pI of 5.8. It cross-reacted with antibodies against cytosolic malate dehydrogenase (cMDH) from pineapple. Maximum activities for oxaloacetate (OAA) reduction or malate oxidation were observed at pH 7.0 and between pH 7.2 and 8.4, respectively. The enzyme was inhibited by excess OAA, in a pH-dependent manner. A discontinuity was observed in Arrhenius plots at 33 °C, with an activation energy twice as high below this temperature. Although immunologically related, some physical and kinetic dissimilarities between the Acordifolia and pineapple enzymes suggest that diverse CAM metabolic subtypes may require different MDH isozymes to carry out OAA reduction.  相似文献   

20.
Abstract From Sedum morganianum, which is a plant species known to have constitutive crassulacean acid metabolism (CAM), phosphoenolpyruvate (PEP) carboxylase (E.C.4.1.1.31) has been extracted and purified by (NH4)2SC4 precipitation, ion exchange chromatography and gel electrophoresis. A specific antibody to this purified enzyme was obtained by immunization of a rabbit. This antibody was used to compare the antigen–antibody reaction of PEP-carboxylases prepared from other Sedum species including constitutive, facultative and non-CAM plants. The experiments revealed partial immunological indentity of PEP-carboxylases obtained from the different sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号