首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies investigated the role of the intermediate area of the ventral surface of the medulla (VMS) in the tracheal constriction produced by hypercapnia. Experiments were performed in chloralose-anesthetized, paralyzed, and artificially ventilated cats. Airway responses were assessed from pressure changes in a bypassed segment of the rostral cervical trachea. Hyperoxic hypercapnia increased tracheal pressure and phrenic nerve activity. Intravenous atropine pretreatment or vagotomy abolished the changes in tracheal pressure without affecting phrenic nerve discharge. Rapid cooling of the intermediate area reversed the tracheal constriction produced by hypercapnia. Graded cooling produced a progressive reduction in the changes in maximal tracheal pressure and phrenic nerve discharge responses caused by hypercapnia. Cooling the intermediate area to 20 degrees C significantly elevated the CO2 thresholds of both responses. These findings demonstrate that structures near the intermediate area of the VMS play a role in the neural cholinergic responses of the tracheal segment to CO2. It is possible that neurons or fibers in intermediate area influence the motor nuclei innervating the trachea. Alternatively, airway tone may be linked to respiratory motor activity so that medullary interventions that influence respiratory motor activity also alter bronchomotor tone.  相似文献   

2.
Respiratory chemical and reflex interventions have been shown to affect nasal resistance or tracheal tone, respectively. In the present study, nasal caliber (assessed from pressure at a constant flow) and tracheal tone (assessed from pressure in a fluid-filled balloon within an isolated tracheal segment) were monitored simultaneously in anesthetized, paralyzed, artificially ventilated (inspired O2 fraction = 100%) cats. We examined the effect of CO2 inhalation and sciatic nerve stimulation as well as the application of nicotine (6 X 10(-4) mol/l) or lidocaine (2% solution) to the intermediate area of the ventral medullary surface (VMS). CO2 and VMS nicotine resulted in a significant increase in tracheal pressure [147 +/- 73 and 91 +/- 86% (SD), respectively]; and a significant reduction in nasal pressure (-35 +/- 10 and -20 +/- 13%, respectively). In contrast, sciatic nerve stimulation resulted in a significant fall in both tracheal (-50 +/- 36%) and nasal pressure (-21 +/- 13%). Application of 2 or 4% lidocaine to the VMS reduced tracheal pressure but did not significantly affect nasal pressure. After VMS lidocaine, nasal and tracheal responses to CO2, sciatic nerve stimulation, or VMS nicotine, when present, were negligible. These results suggest a role for the VMS in the regulation and coordination of nasal and tracheal caliber responses.  相似文献   

3.
The muscarinic receptor antagonist atropine (105 mM) dramatically decreased the response to increased CO2 when applied by cotton pledgets to the rostral ventrolateral medulla ventilatory chemosensitive area in anesthetized, paralyzed, vagotomized, glomectomized, and servoventilated cats with integrated phrenic nerve activity used as respiratory center output. Lower dose atropine (4.4 mM) and the M1-muscarinic receptor subtype antagonist pirenzepine (10 mM) also significantly decreased the mean CO2 response slope 48.3 +/- 6.2 and 40.7 +/- 6.0% (SE), respectively, and significantly decreased the maximum response value 26.3 +/- 8.1 and 19.2 +/- 3.2%, respectively, without significant effects on blood pressure or on the phrenic response to carotid sinus nerve stimulation. The M2-muscarinic receptor subtype antagonist AF-DX 116 (10 mM) had no significant effect on phrenic output or blood pressure. Application of carbachol (10 mM) at the rostral area augmented eucapnic phrenic output and the maximum value of the CO2 response but decreased the initial slope, effects blocked by atropine. Carbachol also decreased the response to carotid sinus nerve stimulation, suggesting that the system was saturated by carbachol stimulation. Muscarinic cholinergic receptors accessible to surface application at the rostral ventrolateral medulla antagonized by pirenzepine but not AF-DX 116 appear to be involved in the central chemoreceptor process.  相似文献   

4.
Airway secretion can be modified reflexly as well as locally. Previous studies indicate that neurons in a circumscribed region near the ventral surface of the medulla (VMS) can substantially modify airway tone and reflex responses to vagal inputs. In the present studies we assessed the importance of these neurons on tracheal gland secretion. We examined the changes in the number of hillocks of secretion appearing from submucosal glands in an exposed field of tracheal epithelium (1.2 cm2) coated with tantalum dust before and after interventions on the VMS. Experiments were performed in alpha-chloralose-anesthetized dogs paralyzed and ventilated with 40% O2. Stimulation of nicotinergic receptors by application of a pledget containing nicotine in 11 dogs caused a significant elevation in tracheal gland secretion in the subsequent 60 s, compared with a control period in which buffered saline was applied. Prior application of lidocaine or hexamethonium bromide to the VMS blocked the effect of topically applied nicotine. The central effects of nicotine were diminished by atropine methylnitrate given intravenously. In addition, lidocaine application to the VMS or focal cooling of intermediate areas to between 20 and 15 degrees C significantly decreased secretion rates reflexly produced by capsaicin-induced stimulation of pulmonary C-fiber receptors and by mechanical stimulation of the carina and larynx. These findings suggest that the ventral medulla contains cells near its surface that influence tracheal fluid secretion and modulate reflex responses of airway submucosal glands, probably by altering the level of general excitation within the central respiratory integrating circuits.  相似文献   

5.
We studied the central effects of N-methyl-D-aspartate (NMDA) on respiration in 18 artificially ventilated cats anesthetized with alpha-chloralose. Unilateral topical application of NMDA (1 x 10(-8) mol) to the intermediate region of the ventrolateral medulla exaggerates the phrenic response to CO2 at end-tidal PCO2 levels of less than 50.0 Torr. At higher end-tidal PCO2 levels, however, such differences disappear. Unilateral NMDA application increases the activity of the right and left phrenic nerves equally. Furthermore, the magnitude of the phrenic response after unilateral application of NMDA was not different from that after bilateral application. NMDA also had a vasopressor action when applied to the ventrolateral medullary surface. In contrast to respiratory responses, bilateral application of NMDA caused a significant increase in blood pressure compared with unilateral application of NMDA. Application of the NMDA antagonist 2-amino-5-phosphonovaleric acid abolished both the blood pressure and respiratory effects of NMDA. These results suggest that CO2 and NMDA may act on a common respiratory premotoneuron to produce stimulation of breathing. Because blood pressure responses, unlike respiratory responses, were greater after bilateral application than after unilateral application of NMDA, it is suggested that the neural substrates for the two effects of NMDA seem to be different.  相似文献   

6.
We examined the contribution of the neural elements near the ventral medullary surface (VMS) to the respiratory response caused by 2,4-dinitrophenol (DNP). Two series of experiments were performed on 12 vagotomized and sinoaortic denervated cats. The first series examined the effect of focal cooling of the VMS on the respiratory response to DNP in four spontaneously breathing, anesthetized cats. When the VMS temperature was 37 degrees C, systemic administration of DNP increased minute ventilation under nearly isocapnic conditions, and focal cooling of the intermediate area of VMS to 20 degrees C attenuated the ventilatory augmentation caused by DNP. To eliminate the influence of anesthetics, a second group of experiments was performed on eight decerebrate, artificially ventilated cats while phrenic nerve activity was monitored as an index of respiration. AgNO3 (10%) was topically applied to the VMS until the respiratory response to inhaled CO2 was abolished. Apnea occurred in seven of eight cats after AgNO3, whereas in the remaining one animal, tidal phrenic activity decreased substantially. Systemic administration of DNP produced no respiratory excitation in any of the animals. On the other hand, rhythmic respiratory activity could be provoked by electrical stimulation of the mesencephalic locomotor area and carotid sinus nerve and by excitation of somatic afferents. Histological examination of the brain stem showed that the AgNO3 had penetrated no more than 350 microns from the ventral medullary surface. These results indicate superficial structures of the VMS are of potential importance in mediating the respiratory responses to hypermetabolism.  相似文献   

7.
To assess the role of structures located superficially near the ventrolateral surface of the medulla on the reflex constriction of tracheal smooth muscle that occurs when airway and pulmonary receptors are stimulated mechanically or chemically, experiments were conducted in alpha-chloralose-anesthetized, paralyzed, and artificially ventilated cats. Pressure changes within a bypassed segment of the trachea were used as an index of alterations smooth muscle tone. The effects of focal cooling of the intermediate areas or topically applied lidocaine on the ventral surface of the medulla on the response of the trachea to mechanical and chemical stimulation of airway receptors were examined. Atropine abolished tracheal constriction induced by mechanical stimulation of the carina or aerosolized histamine, showing that the responses were mediated over vagal pathways. Moderate cooling of the intermediate area (20 degrees C) or local application of lidocaine significantly decreased the tracheal constrictive response to mechanical activation of airway receptors. Furthermore, when the trachea was constricted by histamine, cooling of the intermediate area significantly diminished the increased tracheal tone, whereas rewarming restored tracheal tone to the previous level. These findings suggest that under the conditions of the experiments the ventral surface of the medulla plays an important role in constriction of the trachea by inputs from intrapulmonary receptors and in the modulation of parasympathetic outflow to airway smooth muscle.  相似文献   

8.
To determine whether the responses of tracheal smooth muscle and the nasal vasculature to stimulation of lung C-fiber receptors depend on the level of respiratory drive, the effects of right atrial injection of capsaicin and phenyldiguanide were studied in chloralose-anesthetized, paralyzed, artificially ventilated cats. Studies were performed while the animals were hyperventilated to apnea and, in addition, when breathing was stimulated by inhalation of 7% CO2 or by N-methyl-D-aspartic acid (NMDA) applied to the ventral surface of the medulla. When the cats were hyperventilated to apnea with O2, injection of capsaicin into the right atrium increased tracheal tone and slightly raised nasal resistance. However, when the animals were ventilated with 7% CO2 in O2 or respiratory activity was stimulated by the application of NMDA, administration of capsaicin eliminated spontaneous phrenic nerve activity and caused an abrupt decrease in tracheal tone but still increased nasal resistance. Similar responses were also obtained with right atrial injection of phenyldiguanide. These results showed for the first time that in the cat the direction of the reflex effects on tracheal tone but not nasal resistance depends on the preexisting level of respiratory drive and on cholinergic activity to airway smooth muscle.  相似文献   

9.
Stimulation of chemo-, irritant, and pulmonary C-fiber receptors reflexly constricts airway smooth muscle and alters ventilation in mature animals. These reflex responses of airway smooth muscle have, however, not been clearly characterized during early development. In this study we compared the maturation of reflex pathways regulating airway smooth muscle tone and ventilation in anesthetized, paralyzed, and artificially ventilated 2- to 3- and 10-wk-old piglets. Tracheal smooth muscle tension was measured from an open tracheal segment by use of a force transducer, and phrenic nerve activity was measured from a proximal cut end of the phrenic nerve. Inhalation of 7% CO2 caused a transient increase in tracheal tension in both age groups, whereas hypoxia caused no airway smooth muscle response in either group. The phrenic responses to 7% CO2 and 12% O2 were comparable in both age groups. Lung deflation and capsaicin (20 micrograms/kg iv) administration did not alter tracheal tension in the younger piglets but caused tracheal tension to increase by 87 +/- 28 and 31 +/- 10%, respectively, in the older animals (both P less than 0.05). In contrast, phrenic response to both stimuli was comparable between ages: deflation increased phrenic activity while capsaicin induced neural apnea. Laryngeal stimulation did not increase tracheal tension but induced neural apnea in both age groups. These data demonstrate that between 2 and 10 wk of life, piglets exhibit developmental changes in the reflex responses of airway smooth muscle situated in the larger airways in response to irritant and C-fiber but not chemoreceptor stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Published in vivo experiments have not supported in vitro reports of the presence of nonadrenergic noncholinergic (NANC) inhibitory pathways in the cat trachea. We therefore examined these pathways, measuring tension in an innervated tracheal segment, flow resistance in more distal airways, and dynamic compliance, in 10 anesthetized mechanically ventilated cats. Initially, cervical vagal stimulation evoked contraction followed by relaxation of smooth muscle of trachea and lower airways; sympathetic stimulation evoked relaxation only. After muscarinic blockade and restoration of smooth muscle tone with 5-hydroxytryptamine (5-HT) applied topically to the tracheal mucosa, vagal stimulation did not affect tracheal segment tension, whereas sympathetic-evoked relaxation was preserved. Similar results were found when tone was restored with intravenous 5-HT, with vagal stimulation also decreasing resistance and increasing compliance. We conclude that NANC pathways are present in lower airways but not in the cervical trachea of the cat. We hypothesize that parasympathetic constriction of cat airway smooth muscle can occur without simultaneous NANC activation, whereas NANC activity occurs only in tandem with parasympathetic stimulation.  相似文献   

11.
Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C(1)-C(2) spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic (n = 23) and intercostal nerves (ICNs, n = 93) between T(3) and T(8) spinal segments were recorded from 36 decerebrated, vagotomized, paralyzed, and ventilated male rats. To activate upper cervical spinal neurons, glutamate pledgets (1 M, 1 min) were placed on the dorsal surface of the C(1)-C(2) spinal cord. Glutamate on C(1)-C(2) increased ICN tonic activity in 56/59 (95%) ICNs. The average maximal tonic activity of ICN was increased by 174% (n = 59). After spinal transection at rostral C(1), glutamate on C(1)-C(2) still increased ICN tonic activity in 33/35 ICNs. However, the effects of C(1)-C(2) glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C(1)-C(2) glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was decreased from 34.2 +/- 1.6 to 26.3 +/- 2.0 (mean +/- SE) breaths/min during C(1)-C(2) glutamate. These data suggested that upper cervical propriospinal neurons might play a role in descending modulation of thoracic respiratory and nonrespiratory motor activity.  相似文献   

12.
Abstract: The role of excitatory amino acid (EAA) receptors located in the ventral tegmental area (VTA) in tonic and phasic regulation of dopamine release in the ventral striatum was investigated. Microdialysis in conscious rats was used to assess dopamine release primarily from the nucleus accumbens shell region of the ventral striatum while applying EAA antagonists or agonists to the VTA. Infusion of the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (25 and 100 µ M ) into the VTA did not affect dopamine release in the ventral striatum. In contrast, intra-VTA infusion of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (100 and 500 µ M ) dose-dependently decreased the striatal release of dopamine. Intra-VTA application of the ionotropic EAA receptor agonists NMDA and AMPA dose-dependently (10 and 100 µ M ) increased dopamine efflux in the ventral striatum. However, infusion of 50 or 500 µ M trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), a metabotropic EAA receptor agonist, did not significantly affect these levels. These data suggest that NMDA receptors in the VTA exert a tonic excitatory influence on dopamine release in the ventral striatum. Furthermore, dopamine neurotransmission in this region may be enhanced by activation of NMDA and AMPA receptors, but not ACPD-sensitive metabotropic receptors, located in the VTA. These data further suggest that EAA regulation of dopamine release primarily occurs in the VTA as opposed to presynaptically at the terminal level.  相似文献   

13.
Discharge patterns of thoracic dorsal horn neurons are influenced by chemical activation of cell bodies in cervical spinal segments C(1)-C(2). The present aim was to examine whether such activation would specifically affect thoracic respiratory interneurons (TRINs) of the deep dorsal horn and intermediate zone in pentobarbital sodium-anesthetized, paralyzed, artificially ventilated rats. We also characterized discharge patterns and pathways of TRIN activation in rats. A total of 77 cells were classified as TRINs by location, continued burst activity related to phrenic discharge when the respirator was stopped, and lack of antidromic response from selected pathways. A variety of respiration-phased discharge patterns was documented whose pathways were interrupted by ipsilateral C(1) transection. Glutamate pledgets (1 M, 1 min) on the dorsal surface of the spinal cord inhibited 22/49, excited 15/49, or excited/inhibited 3/49 tested cells. Incidence of responses did not depend on whether the phase of TRIN discharge was inspiratory, expiratory, or biphasic. Phrenic nerve activity was unaffected by chemical activation of C(1)-C(2) in this preparation. Besides supraspinal input, TRIN activity may be influenced by upper cervical modulatory pathways.  相似文献   

14.
We assessed the effects of cooling the ventral medullary surface (VMS) on the activity of chest wall and abdominal expiratory muscles in eight anesthetized artificially ventilated dogs after vagotomy and denervation of the carotid sinus nerves. Electromyograms (EMGs) of the triangularis sterni, internal intercostal, abdominal external oblique, abdominal internal oblique, and transversus abdominis muscles were measured with EMG of the diaphragm as an index of inspiratory activity. Bilateral localized cooling (2 x 2 mm) in the thermosensitive intermediate part of the VMS produced temperature-dependent reduction in the EMG of diaphragm and abdominal muscles. The rib cage expiratory EMGs were little affected at 25 degrees C; their amplitudes decreased at lower VMS temperatures (less than 20 degrees C) but by significantly fewer degrees than the diaphragmatic and abdominal expiratory EMGs at a constant VMS temperature. With moderate to severe cooling (less than 20 degrees C) diaphragmatic EMG disappeared, but rib cage expiratory EMGs became tonic and resumed a phasic pattern shortly before the recovery of diaphragmatic EMG during rewarming of the VMS. These results indicate that the effects of cooling the VMS differ between the activity of rib cage and abdominal expiratory muscles. This variability may be due to inhomogeneous inputs from the VMS to expiratory motoneurons or to a different responsiveness of various expiratory motoneurons to the same input either from the VMS or the inspiratory neurons.  相似文献   

15.
Acetylcholine (ACh) (1.5 X 10(-5) M) elicited three different types of tonic and phasic contraction of muscularis muscle from different parts (cardiac, middle and pyloric) of the stomach of Bufo marinus. Prostaglandin E2 (PGE2) (10(-9)-10(-6) M) induced a concentration-dependent relaxation of tonic contractions elicited by ACh (1.5 x 10(-5) M) of strips from the cardiac part while potentiating the phasic contractions from the middle part of the stomach. PGE2 (10(-7) M) relaxed tonic contraction and potentiated phasic contraction concomitantly in preparations in which tonic and phasic contractions were elicited by ACh (1.5 x 10(-5) M). The effects of PGE2 on the preparation are related to the part of the stomach from where the strips are prepared and the muscle tone of the preparation.  相似文献   

16.
The aim of our study was to investigate mechanism of action of endothelins 1, 2 and 3 on spontaneous activity, tone and intraluminal pressure of human ureter. Both longitudinal tension and intraluminal pressure were recorded from the isolated segments of proximal human ureter. Endothelins 1, 2 and 3 (5.35x10(-11) M - 5.05x10(-8) M) produced concentration-dependent tonic contraction and sustained increase in intraluminal pressure of isolated preparations of human ureter. Endothelins 1 and 3 produced also concentration-dependent inhibition of spontaneous, phasic contractions of the isolated preparations. Selective antagonist of ET(A) receptors BQ123 and selective antagonist of ET(B) receptors BQ788 produced significant inhibition of endothelin-1-induced tonic contraction (pA(2)=8.80 and 6.55, respectively) and increase in intraluminal pressure (pA(2)=8.68 and 7.02, respectively), while they did not affect endothelin-1-induced inhibition of spontaneous activity. Endothelin 1 produces increase in tone and intraluminal pressure of isolated human ureter acting on both ET(A) and ET(B) receptors, the first one being functionally more important. Only endothelins 1 and 3 inhibit spontaneous, phasic activity of human ureter, but this effect was not blocked by selective antagonists of ET(A) and ET(B) receptors.  相似文献   

17.
Whether brain histaminergic neurons contribute to the regulation of tracheal tone and peripheral vascular tone under hyperthermia was investigated in anesthetized rabbits. Histamine release from the rostral ventrolateral medulla (RVLM), the raphe nuclei, and the solitary nucleus of the medulla oblongata was significantly increased by hyperthermia. The increased histamine was significantly suppressed by 10(-6) M tetrodotoxin microdialyzed in each area. Tracheal pressure and mean arterial pressure were significantly decreased and increased by hyperthermia, respectively. An H(1)-receptor antagonist, 5 x 10(-6) M (+)-chlorpheniramine, bilaterally microdialyzed in the RVLM significantly enhanced histamine release in the RVLM as well as significantly suppressed tracheal dilation and pressor response caused by hyperthermia. These data indicate that histamine release in the medulla oblongata is enhanced by hyperthermia. The enhanced histamine is the neuronal origin and the cause of tracheal dilation and pressor response at least via H(1) receptors in the RVLM. Brain histaminergic neurons play important roles in tracheal tone and peripheral vascular tone via H(1) receptors in the RVLM and homeostasis on body temperature.  相似文献   

18.
N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin receptors are required for induction, but not maintenance, of pLTF. However, because NMDA and non-NMDA ionotropic glutamate receptors are directly involved in mediating the inspiratory drive to phrenic, hypoglossal, and intercostal motoneurons, we hypothesized that these receptors are required for both formation and maintenance of vLTF. vLTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O(2)) with 5-min normoxia intervals, was measured with plethysmography in conscious adult male Sprague-Dawley rats. Either (+/-)-2-amino-5-phosphonovaleric acid (APV; NMDA antagonist, 1.5 mg/kg) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA antagonist, 10 mg/kg) was systemically (ip) injected approximately 30 min before hypoxia. APV was also injected immediately after or 20 min after episodic hypoxia in additional groups. As control, vehicle was similarly injected in each rat 1-2 days before. Regardless of being injected before or after episodic hypoxia, vehicle did not alter vLTF ( approximately 23%), whereas APV eliminated vLTF while having little effect on baseline ventilation or hypoxic ventilatory response. In contrast, CNQX enhanced vLTF ( approximately 34%) while decreasing baseline ventilation. Collectively, these results suggest that activation of NMDA but not non-NMDA receptors is necessary for formation and maintenance of vLTF in awake rats.  相似文献   

19.
In vitro antigen challenge has multiple effects on the excitability of guinea pig bronchial parasympathetic ganglion neurons, including depolarization, causing phasic neurons to fire with a repetitive action potential pattern and potentiating synaptic transmission. In the present study, guinea pigs were passively sensitized to the antigen ovalbumin. After sensitization, the bronchi were prepared for in vitro electrophysiological intracellular recording of parasympathetic ganglia neurons to investigate the contribution of cyclooxygenase activation and prostanoids on parasympathetic nerve activity. Cyclooxygenase inhibition with either indomethacin or piroxicam before in vitro antigen challenge blocked the change in accommodation. These cyclooxygenase inhibitors also blocked the release of prostaglandin D(2) (PGD(2)) from bronchial tissue during antigen challenge. We also determined that PGE(2) and PGD(2) decreased the duration of the action potential after hyperpolarization, whereas PGF(2alpha) potentiated synaptic transmission. Thus prostaglandins released during antigen challenge have multiple effects on the excitability of guinea pig bronchial parasympathetic ganglia neurons, which may consequently affect the output from these neurons and thereby alter parasympathetic tone in the lower airways.  相似文献   

20.
Diethyl pyrocarbonate (DEPC) has been useful in vitro as an agent relatively specific for binding to imidazole of histidine. Administered via the cisterna magna DEPC inhibits central chemosensitivity in conscious rabbits, supporting the alphastat hypothesis for central chemoreceptor function. In this study I have applied DEPC via 1 X 3 mm cottonoid pledgets to each of the three ventrolateral medulla (VLM) chemosensitive areas in glomectomized, vagotomized, paralyzed, and servo-ventilated alpha-chloralose-urethan-anesthetized cats. CO2 responses measured by integrated phrenic nerve output were evaluated before and after DEPC application. A dose of 40 mmol/l applied to the rostral chemosensitive area increased the CO2 threshold (5.3%) and significantly decreased (P less than 0.03; Wilcoxon sign rank test) the initial slope (-43%) and the maximum (-41%) of the CO2 response. No significant effects were observed with DEPC application in the intermediate or caudal areas. Treatment with 40 mmol/l hydroxylamine immediately after DEPC in the rostral area prevented the effects supporting the interpretation that imidazole was the reactant with DEPC. The results are consistent with the hypothesis that imidazole-histidine is involved in the mechanism of central chemoreception and indicate that only the rostral area utilizes a DEPC inhibitable mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号