首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UDP-derivative of deoxyglucose (UDP-deoxyglucose) inhibits the formation of dolichyl monophosphate glucose (Dol-P-glucose) in chick embryo cell membranes but has no effect on Dol-PP di-N-acetylchitobiose [Dol-PP-(GlcNAc)2]formation. The effects of UDP-deoxyglucose are not reversed by Dol-P, nor is Dol-P-deoxyglucose formed from this derivative. GDP-deoxyglucose inhibits formation of both Dol-P-glucose and Dol-PP-(GlcNAc)2. It is shown that GDP-deoxyglucose inhibits in these cases by competition with physiological nucleotide sugars for Dol-P. GDP-deoxyglucose and UDP-deoxyglucose also prevent the attachment of the peripheral glucose residues in Dol-PP-(GlcNAc)2-MansyGlc3, the immediate precursor of protein-bound oligosaccharides. The inhibition by GDP-deoxyglucose is only in part reversed by Dol-P, probably because deoxyglucose is incorporated into the lipid-linked oligosaccharide instead of glucose.  相似文献   

2.
The particulate enzyme fraction from mung bean (Phaseolus aureus) seedlings catalyzes the incorporation of mannose from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol and of N-acetylglucosamine from UDP-[3H]N-acetylglucosamine into N-acetylglucosamine-pyrophosphoryl-polyisoprenol. Bacitracin inhibits the transfer of both of these sugars into the lipid-linked saccharides with 50% inhibition being observed at 5 mm bacitracin. This antibiotic did not inhibit the transfer of glucose from UDP-[14C]glucose into steryl glucosides or the incorporation of glucose into a cell wall glucan. Bacitracin also inhibited the in vivo incorporation of [14C]mannose into mannosyl-phosphoryl-dolichol and into glycoprotein by carrot (Daucus carota) slices. While bacitracin also inhibited the incorporation of lysine into proteins by these slices, protein synthesis was less sensitive than glycosylation. Thus at 2 mm bacitracin glycosylation was inhibited 92%, while protein synthesis was inhibited only 50%.  相似文献   

3.
The antibiotic, tsushimycin, inhibits the formation of dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate N-acetylglucosamine in the particulate enzyme preparation from pig aorta. Although this antibiotic also inhibits the incorporation of mannose and glucose into lipid-linked oligosaccharides, these reactions are less sensitive to antibiotic than those involved in the synthesis of lipid-linked monosaccharides. In the presence of tsushimycin, most of the mannose incorporated into lipid-linked oligosaccharides is into one oligosaccharide that has the properties of the heptasaccharide Man5GlcNAc2, whereas in the absence of antibiotic most of the mannose is in larger-sized oligosaccharides. On the other hand, the glucose-labelled lipid-linked oligosaccharides appear to be similar in size in the presence or absence of antibiotic. Tsushimycin also inhibits the formation of lipid-linked monosaccharides by the solubilized enzyme preparation of aorta. Various concentrations of dolichyl phosphate or the detergent, Nonidet P40, had no effect on antibiotic inhibition. Some evidence indicates that tsushimycin binds to the particulate enzyme.  相似文献   

4.
The peptide antibiotic tridecaptin caused a 2--4-fold stimulation in the incorporation of mannose from GDP-[14C]mannose and glucose from UDP-[3H]glucose into lipid-linked monosaccharides by both the particulate and the soluble enzyme fractions from pig aorta. In both cases, the major products and the ones stimulated by antibiotic were dolichyl phosphate mannose and dolichyl phosphate glucose. The stimulation in activity was unaffected by increasing concentrations of dolichyl phosphate, GDP-mannose, UdP-glucose, Mn2+ or the detergent Nonidet P40. Tridecaptin stimulation was apparently not due to protection of sugar nucleotide substrate, since addition of various concentrations of sugar nucleotides did not alter the stimulation. Nor did the addition of tridecaptin result in any increase in the amount of radioactive sugar nucleotide recovered from incubation mixtures. Tridecaptin bound to the particulate enzyme and could not be removed by centrifugation of the particles.  相似文献   

5.
Microsomal preparations from malignant human breast tumors catalyzed the transfer of mannose and glucose from GDP-[14C]-Man and UDP-[14C]-Glc into lipid-linked sugars and glycoprotein-like substances. As judged by several criteria the obtained lipid-linked monosaccharides behaved as dolichyl phosphate mannose and dolichyl phosphate glucose whereas lipid-linked oligosaccharides behaved as polyprenyl diphosphate derivatives. The optimum conditions for mannosyl- and glucosyl-transfer reactions and the effect of dolichyl phosphate, detergent and EDTA on incubation mixture were described.  相似文献   

6.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   

7.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

8.
The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 mm antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 mm.  相似文献   

9.
The effect of the polypeptide antibiotic, amphomycin, on the in vitro and in vivo synthesis of polyprenyl-linked sugars and glycoproteins in plants was examined. This antibiotic blocked the transfer of mannose from GDP-[14C]mannose into mannosyl-phos-phoryl-dolichol by a particulate enzyme preparation from mung beans and also inhibited the transfer of GlcNAc from UDP-[3H]GlcNAc to GlcNAc-pyrophosphoryl-polyisoprenol. The in vitro incorporation of these sugars into trichloroacetic acid-insoluble material was also markedly inhibited by this antibiotic. Since most of the radioactivity incorporated into this insoluble material is rendered water-soluble by treatment with pronase, it seems likely that these sugars are incorporated into glycoproteins whose synthesis is sensitive to amphomycin. Amphomycin also inhibited the transfer of glucose from UDP-[14C]glucose to steryl glucosides, although this system was less sensitive to antibiotic than was synthesis of the polyprenyl-linked sugars. The antibiotic did not block the in vitro transfer of glucose from UDP-[14C]glucose to β-glucans. In carrot slice cultures, amphomycin also inhibited the incorporation of [14C]mannose into glycolipid and glycoprotein, but it did not prevent the incorporation of [14C]lysine into protein.  相似文献   

10.
Incubations of rat spleen lymphocytes with the required labelled nucleotide sugars lead to the formation of the various lipid-intermediates involved in the N-glycosylation of proteins. The effect of bis-(p-nitrophenyl) phosphate on the different reactions involved in the dolichol pathway has been studied. Although dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl diphosphate N-acetylglucosamine synthesis is not affected at all by bis-(p-nitrophenyl) phosphate (20 mM), this product inhibits completely the addition of the second N-acetylglucosamine residue on the dolichyl diphosphate N-acetylglucosamine acceptor. The addition of the five innermost mannose residues from GDP-mannose as donor is also strongly abolished. However, the addition of the more distal sugars, i.e. the four mannose residues using dolichyl phosphate mannose as donors and the additional glucose residues are only slightly affected. The reactions involved in the utilization of dolichyl diphosphate oligosaccharide, i.e. transfer to the proteins or degradation into soluble phospho-oligosaccharides, are also strongly inhibited. Thus bis-(p-nitrophenyl) phosphate appears to affect only the reactions involving the presence of dolichyl diphosphate sugar as substrate.  相似文献   

11.
GDP-mannose and UDP-mannose (each at less than 1 micrometer) markedly inhibit glucosyl transfer from UDP-glucose (1.6 micrometer( to dolichyl phosphate in liver microsomal preparations. The biphasic response suggests the presence of two glucosyl transferases only one of which is inhibited. The inhibition appears to be a property of the intact nucleotide phosphate sugars and not due to competition for a limited pool of dolichyl phosphate. UDP-galactose and UDP-xylose cause a less marked inhibition of the same enzyme. The failure of UDP-glucose to inhibit mannosyl transfer suggests that the pool of dolichol monophosphate used by mannosyl transferase is not available to the glucosyl transferase. The relationship between the degree to which an exogenous prenol phosphate acts as an acceptor of mannose and the degree to which it inhibits mannosylation of endogenous dolichyl monophosphate varies among different prenyl phosphates. Mannosyl transferase exhibits two pH optima.  相似文献   

12.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

13.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

14.
The concentrations of dolichol and cholesterol in livers of rats maintained for 2 weeks on a diet enriched with cholesterol (1%) were significantly higher than those in animals on a normal diet. The incorporation of radioactive mevalonate into dolichol and into a dolichyl diphosphate oligosaccharide fraction by liver slices of the cholesterol-fed animals was increased over that of the control group. However, the incorporation of radioactive mevalonate into cholesterol was decreased, as was the incorporation of radioactive acetate into both dolichol and, more markedly, cholesterol. These results are consistent with cholesterol feeding causing partial inhibition of the cholesterol-biosynthetic pathway both at β-hydroxy-β-methylglutaryl coenzyme A reductase and at a step after farnesyl pyrophosphate formation, resulting in a greater flux of mevalonate to dolichol and an increase in pool sizes of precursors of β-hydroxy-β-methylglutaryl coenzyme A. Maximal activity of glycosyl transfer to dolichyl phosphate was greater in microsomal preparations from livers of cholesterol-fed animals compared with those of control animals. A corresponding higher degree of in vitro glycosylation of endogenous protein was also observed. It is concluded that the cholesterol-enriched diet caused an increase in the biosynthesis and concentration of dolichyl monophosphate which resulted in a higher level of N-glycosylation of protein. These effects were complicated by differences in the kinetics of glycosyl transfer and in its response to exogenous dolichyl monophosphate.  相似文献   

15.
Cell-free enzyme particles from mung beans (Phaseolus aureus) or cotton (Gossypium hirsutum L.) fibers catalyze the incorporation of mannose from GDP-[14C]mannose and N-acetylglucosamine from UDP-[3H]-N-acetylglucosamine into polyprenyl-type lipids. These lipids have been synthesized and purified and the lipid moieties compared to each other as well as to dolichyl phosphate and to lipids isolated from similar mannoseand N-acetylglucosamine-containing lipids from liver and aorta.

The following lines of evidence indicate that in plants, the lipid carrier for N-acetylglucosamine is different from the lipid carrier for mannose: [List: see text]

We propose that the apparent difference in the lipid carrier for these two sugars may be a point of control of glycoprotein synthesis.

  相似文献   

16.
Incubation of rat-spleen lymphocytes with UDP-glucose together with GDP-mannose and UDP-N-acetylglucosamine leads to the formation of glucosylated lipid intermediates characterized as dolichyl phosphate glucose and dolichyl diphosphate oligosaccharides. This latter can be either transferred onto endogenous protein acceptors or cleaved into phosphooligosaccharides. The striking fact is that phosphooligosaccharide populations contain far less glucosylated products than the dolichyl diphosphate oligosaccharide ones from which they are derived. Two hypotheses have been investigated: either a rapid action of glucosidases on the liberated phosphooligosaccharides or a preferential splitting of the non-glucosylated population of dolichyl diphosphate oligosaccharides. Addition of p-nitrophenyl-alpha-D-glucoside inhibits glucosidase activities and allows the production of a major population of dolichyl diphosphate oligosaccharides containing three glucose residues. Using these conditions, it is shown that the amount of phosphooligosaccharides generated from the splitting of dolichyl diphosphate oligosaccharides is greatly decreased and that the major part of these remaining phosphooligosaccharides do not contain glucose. These results show that the presence of glucosyl units prevent dolichyl diphosphate oligosaccharides from further degradation into phosphooligosaccharides.  相似文献   

17.
In the absence of detergent, the transfer of mannose from GDP-mannose to rat liver microsomal vesicles was highly stimulated by exogenous retinyl phosphate in incubations containing bovine serum albumin, as measured in a filter binding assay. Under these conditions 65% of mannose 6-phosphatase activity was latent. The transfer process was linear with time up to 5min and with protein concentration up to 1.5mg/0.2ml. It was also temperature-dependent. The microsomal uptake of mannose was highly dependent on retinyl phosphate and was saturable against increasing amounts of retinyl phosphate, a concentration of 15mum giving half-maximal transfer. The uptake system was also saturated by increasing concentrations of GDP-mannose, with an apparent K(m) of 18mum. Neither exogenous dolichyl phosphate nor non-phosphorylated retinoids were active in this process in the absence of detergent. Phosphatidylethanolamine and synthetic dipalmitoylglycerophosphocholine were also without activity. Several water-soluble organic phosphates (1.5mm), such as phenyl phosphate, 4-nitrophenyl phosphate, phosphoserine and phosphocholine, did not inhibit the retinyl phosphate-stimulated mannosyl transfer to microsomes. This mannosyl-transfer activity was highest in microsomes and marginal in mitochondria, plasma and nuclear membranes. It was specific for mannose residues from GDP-mannose and did not occur with UDP-[(3)H]galactose, UDP- or GDP-[(14)C]glucose, UDP-N-acetyl[(14)C]-glucosamine and UDP-N-acetyl[(14)C]galactosamine, all at 24mum. The mannosyl transfer was inhibited 85% by 3mm-EDTA and 93% by 0.8mm-amphomycin. At 2min, 90% of the radioactivity retained on the filter could be extracted with chloroform/methanol (2:1, v/v) and mainly co-migrated with retinyl phosphate mannose by t.l.c. This mannolipid was shown to bind to immunoglobulin G fraction of anti-(vitamin A) serum and was displaced by a large excess of retinoic acid, thus confirming the presence of the beta-ionone ring in the mannolipid. The amount of retinyl phosphate mannose formed in the bovine serum albumin/retinyl phosphate incubation is about 100-fold greater than in incubations containing 0.5% Triton X-100. In contrast with the lack of activity as a mannosyl acceptor for exogenous dolichyl phosphate in the present assay system, endogenous dolichyl phosphate clearly functions as an acceptor. Moreover in the same incubations a mannolipid with chromatographic properties of retinyl phosphate mannose was also synthesized from endogenous lipid acceptor. The biosynthesis of this mannolipid (retinyl phosphate mannose) was optimal at MnCl(2) concentrations between 5 and 10mm and could not be detected below 0.6mm-MnCl(2), when synthesis of dolichyl phosphate mannose from endogenous dolichyl phosphate was about 80% of optimal synthesis. Under optimal conditions (5mm-MnCl(2)) endogenous retinyl phosphate mannose represented about 20% of dolichyl phosphate mannose at 15min of incubation at 37 degrees C.  相似文献   

18.
This is the first report not only on the presence of polyprenyl phosphates and their site of synthesis in algae, but also on the formation of their sugar derivatives in this system.

A glucose acceptor lipid was isolated from the nonphotosynthetic alga Prototheca zopfii. The lipid was acidic and resistant to mild acid and alkaline treatments. The glucosylated lipid was labile to mild acid hydrolysis and resistant to phenol treatment and catalytic hydrogenation, as dolichyl phosphate glucose is. These results are consistent with the properties of an α-saturated polyprenyl phosphate.

The polyprenylic nature of the lipid was confirmed by biosynthesis from radioactive mevalonate. The [14C]lipid had the same chromatographic properties as dolichyl phosphate in DEAE-cellulose and Sephadex LH-20. Strong alkaline treatment and enzymic hydrolysis liberated free alcohols with chain lengths ranging from C90 to C105, C95 and C100 being the most abundant molecular forms. The glucose acceptor activity of the biosynthesized polyprenyl phosphate was confirmed.

The ability of different subcellular fractions to synthesize dolichyl phosphate was studied. Mitochondria and the Golgi apparatus were the sites of dolichyl phosphate synthesis from mevalonate.

  相似文献   

19.
Announcement     
Phosphate concentration was found to control the biosynthesis of the antibiotic candicidin by resting cells of Streptomyces griseus. Phosphate concentrations above 1 mM decreased the rate of incorporation of [14C]propionate and [14C]p-aminobenzoic acid into candicidin in relation to the concentration of phosphate. The inhibitory effect of phosphate on incorporation of labeled precursors into candicidin was not caused by inhibition of cellular uptake of precursors. Protein synthesis, sensitive to chloramphenicol, was not affected by phosphate levels that inhibit antibiotic synthesis. Similarly, phosphate concentrations inhibitory to antibiotic synthesis did not affect rifampinsensitive RNA synthesis.  相似文献   

20.
Cleland R 《Plant physiology》1967,42(9):1165-1170
Free hydroxyproline inhibits the formation of protein-bound hydroxyproline from proline to a considerably greater extent than it does the incorporation of proline into protein of auxin-treated Avena coleoptiles. This inhibition is greater in the wall than in the cytoplasmic fraction. In the absence of auxin, free hydroxyproline exerts little or no inhibition of hydroxyproline formation. Furthermore free hydroxyproline has no effect on respiration, RNA synthesis or the incorporation of leucine into protein. Hydroxyproline is not a general inhibitor of metabolism or protein synthesis in Avena coleoptiles.

These results suggest that free hydroxyproline may inhibit auxin-induced cell elongation by blocking the formation or utilization of a particular hydroxyproline-rich protein which must be incorporated into the cell wall during auxin-induced wall extension.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号