首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoinduced fluorescence enhancement of bilirubin bound to primary binding site on human serum albumin (HSA) was completely ceased when epsilon-NH(2) groups of its internal lysine residues were covalently blocked by acetylation or succinylation though the pigment bound to these derivatives in a folded conformation akin to that bound to HSA. These photoinduced fluorescence modulations cannot be ascribed to the binding of bilirubin to secondary low affinity sites as the CD spectrum of bilirubin bound to these derivatives showed complete inversion upon addition of chloroform which binds to subdomain IIA in HSA where high affinity bilirubin binding site is located. Presence of chloroform reconciled the photoinduced alterations in the CD spectrum observed in its absence, suggesting that chloroform stabilized the bound ligand against light but the fluorescence properties of bilirubin complexed with acetylated or succinylated derivatives remained unchanged. Guanidination of internal epsilon-NH(2) groups in HSA by O-methylisourea did not alter the spectral properties of the bound ligand. These results suggest that salt linkage(s) existing between epsilon-NH(2) groups of lysine residues in HSA and carboxyl groups of bilirubin, act(s) as a potential barrier during conformational rotation of the bound ligand assisted by photoactivation and their abolishment can alter its dynamics and stereoselectivity, a hitherto unnoticed implication of salt linkage(s) in BR-HSA complex.  相似文献   

2.
The role of internal lysine residues of different serum albumins, viz. from human, rabbit, goat, sheep and buffalo (HSA, RbSA, GSA, SSA and BuSA), in conformational stability and bilirubin binding was investigated after blocking them using acetylation, succinylation and guanidination reactions. No significant change in the secondary structure was noticed whereas the tertiary structure of these proteins was slightly altered upon acetylation or succinylation as revealed by circular dichroism (CD), fluorescence and gel filtration results. Guanidination did not affect the native protein conformation to a measurable extent. Scatchard analysis, CD and absorption spectroscopic results showed marked reductions (5-21-fold decrease in K(a) and approximately 50% decrease in the CD Cotton effect intensity) in the affinity of albumins for bilirubin upon acetylation or succinylation whereas guanidination produced a small change. Interestingly, monosignate CD spectra of bilirubin complexed with GSA, SSA and BuSA were transformed to bisignate CD spectra upon acetylation or succinylation of internal lysine residues whereas spectra remained bisignate in the case of bilirubin bound to acetylated or succinylated derivatives of HSA and RbSA. When probed by CD spectroscopy, bilirubin bound to acetylated or succinylated derivatives of GSA and SSA rapidly switched over to native albumins and not vice versa. These results suggested that salt linkage(s) contributed by internal lysine residue(s) play an important role in the high-affinity binding of bilirubin to albumin and provide stability to the native three-dimensional conformation of the bound pigment. Chloroform severely decreased the intensity of both positive and negative CD Cotton effects of bilirubin complexed with acetylated or succinylated derivatives of all albumins which otherwise increased significantly in the case of bilirubin complexed with native and guanidinated albumin derivatives, except the bilirubin-RbSA complex which showed a small decrease in intensity. These results suggest that the presence of salt linkage(s) in bilirubin-albumin complexation is(are) crucial to bring about effective and efficient stereochemical changes in the bound pigment by co-binding of chloroform which seems to have at least one conserved binding site on these albumins that is shared with bilirubin.  相似文献   

3.
We monitored the unfolding of human serum albumin (HSA) and glycated human serum albumin (gHSA) subjected to guanidine hydrochloride (GndHCl) by using fluorescence and circular dichroism (CD) spectroscopy. A two-state model with sloping baselines best described the Trp-214 fluorescence unfolding measurements, while a three-state model best described the far-UV CD unfolding data. Glycation of HSA increased the [D](50%) point by approximately 0.20M. This corresponded to an increase in the free energy of unfolding of gHSA relative to HSA of 2.6kJ/mol. The intrinsic fluorescence of Trp-214 in gHSA is 0.72 of that of HSA and the far-UV CD spectrum of gHSA is nearly identical to that of HSA. These results showed that glycation altered the local structure around Trp-214 while not significantly impacting the secondary structure, and this alteration translated into an overall change in the stability of gHSA compared to HSA.  相似文献   

4.
Khan MM  Muzammil S  Tayyab S 《Biochimie》2000,82(3):203-209
Chloroform-induced conformational changes of bilirubin (BR) bound to different serum albumins were studied by circular dichroism (CD) and fluorescence spectroscopy. Addition of a small amount of chloroform ( approximately 20 mM) to a solution containing 20 microM albumin and 15 microM BR changed the sign order and magnitude of the characteristic CD spectra of all BR-albumin complexes except BR-PSA complex which showed abnormal behavior. Monosignate negative CD Cotton effects (CDCEs) of BR complexed with SSA, GSA and BuSA were transformed into bisignate CDCEs in presence of chloroform akin to those exhibited by chloroform free solution of BR-HSA complex, indicating that the pigment acquired right handed plus (P) chirality when chloroform was added to these complexes. Bisignate CD spectra of BR complexed with HSA and BSA showed complete inversion upon addition of chloroform corroborating earlier findings. On the other hand, changes observed with BR-RSA complex were slightly different showing an additional CD band of weak intensity centered around 390 nm though inversion of CDCEs was similar to that of BR-HSA complex. Monosignate CD spectra of BR-PSA complex also showed three CD bands occurring at 409, 470 and 514 nm after chloroform addition. These results indicated significant but different effects of chloroform on the conformation of bound BR in BR-albumin complexes which can be ascribed to the changes in the exciton chirality of bilirubin probably due to altered hydrophobic microenvironment induced by the binding of chloroform at or near the ligand binding site. Chloroform severely quenched the intrinsic tryptophan fluorescence of the protein and shifted the emission maxima towards blue region in all the albumins except PSA. However, quantitative differences in both quenching and blue shift were noted in different serum albumins. This suggests that chloroform probably binds in the close vicinity of tryptophan residue(s) located in subdomain(s) IIA or IB and II both. The fluorescence of BR-albumin complexes was also found to be sensitive to the presence of a small amount of chloroform. But the changes observed in the fluorescence of the bound pigment in presence of chloroform were less marked as compared to the changes in the intrinsic fluorescence of protein per se. Taken together, these results suggest that there is at least one conserved site for chloroform binding in all these albumins which is at or near the BR binding site.  相似文献   

5.
The bilirubin (BR) photo-conversion in the human body is a protein-dependent process; an effective photo-isomerization of the potentially neurotoxic Z,Z-BR as well as its oxidation to biliverdin in the antioxidant redox cycle is possible only when BR is bound on serum albumin. We present a novel analytical concept in the study of linear tetrapyrroles metabolic processes based on an in-depth mapping of binding sites in the structure of human serum albumin (HSA). A combination of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling methods was used for recognition of the binding site for BR, its derivatives (mesobilirubin and bilirubin ditaurate), and the products of the photo-isomerization and oxidation (lumirubin, biliverdin, and xanthobilirubic acid) on HSA. The CD spectra and fluorescent quenching of the Trp–HSA were used to calculate the binding constants. The results of the CD displacement experiments performed with hemin were interpreted together with the findings of molecular docking performed on the pigment–HSA complexes. We estimated that Z,Z-BR and its metabolic products bind on two independent binding sites. Our findings support the existence of a reversible antioxidant redox cycle for BR and explain an additional pathway of the photo-isomerization process (increase of HSA binding capacity; the excess free [unbound] BR can be converted and also bound to HSA).  相似文献   

6.
Lipocalin-type prostaglandin D synthase is a major protein of the cerebrospinal fluid and was originally known as beta-trace. We investigated the binding ability of prostaglandin D synthase toward bile pigments, thyroid hormones, steroid hormones, and fatty acids in this present study. We found that the recombinant enzyme binds bile pigments and thyroid hormones, resulting in quenching of the intrinsic tryptophan fluorescence, the appearance of induced circular dichroism of the lipophilic ligands, and a red shift of the absorption spectra of bilirubin and biliverdin. The binding of prostaglandin D synthase to lipophilic ligands was also demonstrated by the resonant mirror technique and surface plasmon resonance detection. The dissociation constants were calculated to be 33 nM, 37 nM, 660 nM, 820 nM, and 2.08 microM for biliverdin, bilirubin, L-thyroxine, 3,3',5'-triiodo-L-thyronine, and 3,3', 5-triiodo-L-thyronine, respectively. Biliverdin and bilirubin underwent a shift in their absorption peaks from 375 to 380 nm and from 439 to 446 nm, respectively, after binding to prostaglandin D synthase. Bilirubin bound to the enzyme showed a bisignate CD spectrum with a (-) Cotton effect at 422 nm and a (+) Cotton effect at 472 nm, indicating a right-handed chirality. The ligands also inhibited prostaglandin D synthase activity noncompetitively in a concentration-dependent manner, with IC50 values between 3.9 and 10. 9 microM. Epididymal retinoic acid-binding protein and beta-lactoglobulin, two other lipocalin proteins that bind retinoids such as prostaglandin D synthase, did not show any significant interaction with bile pigments or thyroid hormones. These results show that prostaglandin D synthase binds small lipophilic ligands with a specificity distinct from that of other lipocalins.  相似文献   

7.
Binding between human serum albumin and a spin-labelled derivative of bilirubin was investigated by circular dichroism, fluorescence quenching, electron spin resonance and visible spectroscopy. The orders of magnitude of the binding constants obtained by flurorescence quenching and electron spin resonance spectroscopies were 10(7) and 10(3) 1 . mol-1, respectively. These data suggest that most spin-labelled bilirubin interacts with human serum albumin at the side not holding the spin-labelled side-arm. CD measurements showed the presence of at least two sites, associated with opposite Cotton effects. It is worthy of note that the Cotton sign of the first site is inverted with respect to the corresponding one of bilirubin. CD measurements on mixed systems (spin-labelled bilirubin/human serum albumin/bilirubin) were also performed. The decomposition of the ternary curves shows that the rotatory power of bilirubin bound to human serum albumin is higher in the ternary system than in the binary (bilirubin/human serum albumin). The corresponding CD measurements for the binding between spin-labelled bilirubin and bovine serum albumin are also reported and discussed.  相似文献   

8.
A monomorphic albumin-like protein (CfSA) has been purified to homogeneity from the serum of African air-breathing catfish Clarias gariepinus Bloch. It has a molecular mass of approximately =70 kD and shows a lesser electrophoretic mobility than human serum albumin (HSA) in native gels. The protein exhibits cross-reactivity against rabbit anti-HSA serum and shows considerable similarity with HSA in secondary structure, however, with some differences, as indicated by a slight shift in the peaks around 267 nm and 278 nm and the absence of shoulders at 276 and 283. A certain degree of similarity also exists between their tertiary structures with respect to aromatic asymmetric environment as indicated by far-UV CD spectra and the visible range CD spectra of bilirubin complexes. CfSA-bilirubin complex is mainly characterized by bisignate CD Cotton effects (CDCEs), having minima and maxima wavelengths at 406 and 486 nm, respectively and unlike HSA, it shows prominent additional maxima around 426 nm. Based on the number of sulfhydryls, CfSA is in the rank of advanced teleosts. The occurrence of albumin in C. gariepinus in relation to the evolutionary dichotomy of albumin and other members of its multigene family in class Pisces has been discussed.  相似文献   

9.
Bichromophoric (4Z, 15Z)-bilirubin-IX alpha, the yellow-orange cytotoxic pigment of jaundice, adopts either of two intramolecularly hydrogen-bonded enantiomeric conformations that are in dynamic equilibrium in solution. The addition of optically active amines induces the pigment solutions to exhibit intense bisignate circular dichroism in the region of the bilirubin long wavelength uv-visible absorption band. The most intense circular dichroism Cotton effects, (delta epsilon) approximately equal to 130, are induced by beta-arylamines and are comparable to those exhibited by bilirubin complexes with serum albumin and other proteins. Like serum albumin and other proteins, the optically active base acts as a chiral complexation agent to induce an asymmetric transformation of bilirubin, whose induced bisignate circular dichroism Cotton effect is characteristic of exciton splitting of the component pyrromethenone chromophores. The amines thus serve as chiral templates for molecular recognition, and the complementary action of the amine complexation sites provides insight into the binding forces important in protein-bilirubin heteroassociation.  相似文献   

10.
Both isomers of diamminedichloroplatinum(II) bind to albumin and induce the formation of the albumin dimer (MW approximately 140 kDa). The trans isomer exhibits a much greater tendency to induce a protein dimerization than the cis isomer. Under similar experimental conditions, the phosphonic derivative of diammineplatinum(II) (DBP) does not induce any dimer formation. The amount of bound complex per mol of human serum albumin (HSA, for an incubation time of 7 days) was found to be 6, 10.5 and 1 mol for cis-, trans-DDP and DBP, respectively. The relative fluorescence intensity of platinum-bound HSA decreases to about 55% for cis-DDP, 45% for trans-DDP and to 85% for DBP when compared to the complex-free protein, suggesting that the binding occurs in the proximity of the Trp214 residue. The structural studies (CD) have shown that only DDP-isomers cause the distinct modification of HSA native structure (alpha-helical content). Pt(II) complexes binding to HSA affect the affinity of HSA towards heme and bilirubin. High excess of DDP prevents the heme and bilirubin binding, while DBP affects this binding much less effectively due to the low amount of the protein-bound complex. Reactions of platinum complexes with albumin are believed to play an important role in the metabolism of this anticancer drug. The minor effect of DBP on HSA may indicate that the toxicity of the phosphonate analog is much lower than toxicities of DDP isomers, most likely due to kinetic reasons.  相似文献   

11.
Pistolozzi M  Bertucci C 《Chirality》2008,20(3-4):552-558
Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.  相似文献   

12.
Paclitaxel (trade name Taxol) is one of the world's most effective anticancer drugs. It is used to treat several cancers including tumours of the breast, ovary and lung. In the present work the interaction of paclitaxel with human serum albumin (HSA) in aqueous solution at physiological pH has been investigated through CD, fluorescence spectroscopy and by the antibody precipitate test. Binding of paclitaxel to albumin impact on protein structure and it influences considerably albumin binding of other molecules like warfarin, heme or bilirubin. The paclitaxel-HSA interaction causes the conformational changes with the loss of helical stability of protein and local perturbation in the domain IIA binding pocket. The relative fluorescence intensity of the paclitaxel-bound HSA decreased, suggesting that perturbation around the Trp 214 residue took place. This was confirmed by the destabilization of the warfarin binding site, which includes Trp 214, and high affinity bilirubin binding site located in subdomain IIA.  相似文献   

13.
Previous work has proved that hypocrellin B (HB) binds to human serum albumin (HSA) at a specific site instead of distributed randomly on the surface of a protein. In the current work, further investigation by using bilirubin as a site I marker indicates that HB can compete for the same site with bilirubin, suggesting that the HB binding site is located at sub-domain IIA (site I) of HSA. Moreover, bound to HSA, the HB fluorescence was found to be pH sensitive in physiological range (pH 6.0-8.0). The increasing of binding constant of HB to HSA in the pH range 6-8 also indicates that the N<-->B transition modulates the microenvironment changes of the binding site and influences considerably the binding between HB and HSA. Furthermore, picosecond time-resolved fluorescence spectra of HB-HSA complex in PBS indicate an additional short-lived component compared to that for HB in benzene, which may be assigned to the process of electron transfer from Trp-214 to HB.  相似文献   

14.
Ethanol effects on warfarin binding to human serum albumin (HSA) have been studied by equilibrium dialysis and fluorescence methods at pH 7.4 in phosphate-buffered saline at 37 degrees C. In the presence of various amounts of ethanol fluorescence intensity of bound warfarin decreased significantly but this intensity reduction was not solely from displacement of bound warfarin from HSA. By comparing fluorescence and equilibrium dialysis data we concluded that fluorescence intensity reduction of warfarin was mainly the result of changes in the surrounding environment of the warfarin binding site by ethanol interaction with HSA and that displacement of bound warfarin was not significant compared to the fluorescence intensity changes. The dissociation constant of warfarin binding to HSA decreased with an increasing amount of ethanol. From the changes in fluorescence intensity upon warfarin binding to HSA with the presence of ethanol ranging from 0 to 5.0% the following dissociation constants (Kd) were determined: 0% ethanol 5.39 +/- 0.2 microM, 0.1% ethanol 5.86 +/- 0.1 microM, 0.3% ethanol 5.83 +/- 0.2 microM, 0.5% ethanol 6.76 +/- 0.1 microM, 1% ethanol 7.01 +/- 0.1 microM, 3% ethanol 9.9 +/- 0.7 microM, 5% ethanol 13.01 +/- 0.1 microM. From the equilibrium dialysis with the same ranges of ethanol presence the following Kd values were obtained: 0% ethanol 6. 62 +/- 1.6 microM, 0.1% ethanol 6.81 +/- 1.1 microM, 0.3% ethanol 8. 26 +/- 2.5 microM, 0.5% ethanol 8.86 +/- 1.9 microM, 1% ethanol 11. 01 +/- 4.2 microM, 3% ethanol 20.75 +/- 2.4 microM, 5% ethanol 21.67 +/- 2.2 microM. The results suggest that warfarin bound to HSA was displaced by ethanol. These data indicate that ethanol influence on warfarin binding to HSA may alter the pharmacokinetics of warfarin.  相似文献   

15.
Human serum albumin binds tightly and noncovalently to a wide variety of hydrophobic bilirubins, including (4Z,15Z)-bilirubin-IX alpha, its dimethyl ester and mono methyl esters, its mono 2-butyl esters and amides, the dimethyl ester of (4Z,15Z)-mesobilirubin-IV alpha, and even (4Z,15Z)-etiobilirubin-IV gamma. The heteroassociation complexes formed from these highly water-insoluble pigments and the protein can be prepared in pH 7.4 aqueous by using a small quantity of dimethyl sulfoxide as amphiphilic carrier. In those solutions the protein acts as a water-soluble chiral complexation agent to induce an asymmetric transformation of the bound pigment. This is recognized by positive chirality, bisignate induced circular dichroism (CD) Cotton effects that fall in the region of the bichromophoric pigment's long wavelength UV-visible absorption band and are characteristic of intramolecular exciton coupling of the bilirubin component pyrromethenone chromophores. The same-signed CD spectra shared by all the pigments of this work indicate selection at the protein binding site for a positive chirality conformer and suggest a common binding site. The CD intensities, which are greatest ([delta epsilon[ congruent to 50) for pigments with one or two free carboxyl groups, are consistent with a binding model where one salt linkage plays a major role in the enantioselectivity of the right-handed folded conformation stabilized by inter- and intramolecular hydrogen bonds.  相似文献   

16.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

17.
Exposure of BR–albumin complexes to visible light at pH 8.0 led to a change in the fluorescence intensity at 525 nm, which was found to be different for different serum albumins. Whereas a complex of BR with human serum albumin (HSA) showed a marked increase in fluorescence upon photoirradiation, BR–sheep serum albumin (SSA) complex failed to produce a marked increase. On the other hand, a complex of pig serum albumin (PSA) with BR produced a remarkable decrease in fluorescence upon photoirradiation. Equilibration of these complexes with 20 mM chloroform for 1 h resulted in alteration in the photoinduced fluorescence. These photoinduced fluorescence modulations were found to be concentration dependent. Photoirradiation of BR–HSA complex led to a significant decrease in the positive CDCEs of the bisignate CD spectra in a time dependent manner that can be reconciled, to a significant extent, in the presence of chloroform. Taken together, all these results suggest that chiroptical properties/stability of albumin-bound BR varies with albumin species, protein concentration and the presence of chloroform.  相似文献   

18.
Binding of bilirubin (BR) to pigeon serum albumin (PgSA) was studied by absorption, fluorescence and CD spectroscopy and results were compared with those obtained with human serum albumin (HSA). PgSA was found to be structurally similar to HSA as judged by near- and far-UV CD spectra. However, PgSA lacks tryptophan. Binding of BR to PgSA showed relatively weaker interaction compared to HSA in terms of binding affinity, induced red shift in the absorption spectrum of BR and CD spectral characteristics of BR-albumin complexes. Photoirradiation results of BR-albumin complexes also showed PgSA-bound BR more labile compared to HSA-bound BR.  相似文献   

19.
Bixin is an important, pharmacologically active dietary cis-carotenoid, but its interaction with potential macromolecular targets is completely unexplored. This work was aimed to study the binding of bixin to human serum albumin (HSA), the most abundant protein in blood plasma. Circular dichroism (CD) spectroscopy in combination with UV/VIS absorption spectroscopy and fluorescence quenching techniques were applied. Appearance of induced CD bands in the UV- and VIS-absorption spectral regions indicated the formation of non-covalent carotenoid-albumin complexes. Shape and spectral position of the extrinsic Cotton effects suggested the binding of a single bixin molecule to HSA in chiral conformation. Scatchard and non-linear regression analyses of CD titration data resulted in similar values for the association constant (Ka = 6.6 and 4.6x10(5) M(-1), resp.) and for the number of binding sites (n = 1). The binding interaction was independently confirmed by fluorescence-quenching experiment from which the binding parameters were also calculated. CD Displacement measurements performed with marker ligands established that the main drug binding sites of HSA are not involved in binding of bixin. Palmitic acid decreased the amplitude of the induced CD bands suggesting a common albumin binding site for bixin and long-chain fatty acids. The above data indicate that HSA plays a significant role in the plasma transportation of bixin and related dietary carboxylic acid carotenoids.  相似文献   

20.
The electrostatic interaction of amino acid lysines 190, 195 and 199 of human serum albumin (HSA) with bilirubin have been investigated using molecular dynamic simulations, QM and QM/MM minimization methods. In this study two methodological approaches have been employed. In the first approach X-ray structure and the structure obtained from the molecular dynamic simulation of subdomain IIA of HSA in vacuum have been utilized. Interactions have been evaluated with the segment 186-200 of the cited subdomain. Calculations on the X-ray structure of above segment indicate an effective interaction of the lysine 195 with bilirubin, although that of the lysine 190 is also found considerable in this structure. Performing simulation in vacuum, it has been revealed that except for the lysine 195, the other two lysine residues (190 and 199) could not be considered as centers of interaction. Such finding, which is in accord with experimental data, lends support to the procedure employed in this study. NBO analyses suggest that tasks to achieve a structure indicating bilirubin interaction with the lysine 195 from the 186-200 segment extracted from X-ray structure, results in a structure that lacks any electrostatic interaction. In fact, it has been found that the stability of the latter species can be attributed to the H-bonding interaction of the glutamate 188 with both bilirubin and the lysine 195. Further NBO analysis on the structure of the same species, while achieved after molecular dynamic simulation on subdomain IIA in vacuum has revealed that a favorable electrostatic interaction between the lysine 195 and bilirubin has occurred. Besides, H-bonding interaction of the glutamate 188 with bilirubin has been evident in the same species. For the second approach, presence of water molecules and ions has been considered to simulate condensed medium. Applying docking, conformational sampling, and QM/MM minimization steps in sequence, a structure has been achieved which presents a specific interaction between epsilon-NH3(+) group of the lysine 195 residue and the lactam oxygen atom of bilirubin. NBO analyses suggest that above electrostatic interaction is combined with hydrogen bonding interaction between same two groups. Moreover, a hydrogen bond between oxygen atom of bilirubin's acetate group and alpha-NH group of lysine 195 has been observed. Molecular orbital calculations have been presented which support the NBO analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号