首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant yield is the integrated outcome of processes taking place above and below ground. To explore genetic, environmental and developmental aspects of fruit yield in tomato, we phenotyped an introgression line (IL) population derived from a cross between the cultivated tomato (Solanum lycopersicum) and a wild species (Solanum pennellii). Both homozygous and heterozygous ILs were grown in irrigated and non-irrigated fields and evaluated for six yield components. Thirteen lines displayed transgressive segregation that increased agronomic yield consistently over 2?years and defined at least 11 independent yield-improving QTL. To determine if these QTL were expressed in the shoots or the roots of the plants, we conducted field trials of reciprocally grafted ILs; out of 13 lines with an effect on yield, 10 QTL were active in the shoot and only IL8-3 showed a consistent root effect. To further examine this unusual case, we evaluated the metabolic profiles of fruits from both the homo- and heterozygous lines for IL8-3 and compared these to those obtained from the fruit of their equivalent genotypes in the root effect population. We observed that several of these metabolic QTL, like the yield QTL, were root determined; however, further studies will be required to delineate the exact mechanism mediating this effect in this specific line. The results presented here suggest that genetic variation for root traits, in comparison to that present in the shoot, represents only a minor component in the determination of tomato fruit yield.  相似文献   

2.
Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders’ germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine‐derived volatiles (PHEVs) 2‐phenylethanol, phenylacetaldehyde and 1‐nitro‐2‐phenylethane. Fruits of near‐isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose‐hip‐like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene‐editing‐based (CRISPR‐CAS9) reverse‐genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.  相似文献   

3.
The efficiency of marker-assisted backcross for the introgression of a quantitative trait locus (QTL) from a donor line into a recipient line depends on the stability of QTL expression. QTLs for six quality traits in tomato (fruit weight, firmness, locule number, soluble solid content, sugar content and titratable acidity) were studied in order to investigate their individual effect and their stability over years, generations and genetic backgrounds. Five chromosome regions carrying fruit quality QTLs were transferred following a marker-assisted backcross scheme from a cherry tomato line into three modern lines with larger fruits. Three sets of genotypes corresponding to three generations were compared: (1) an RIL population, which contained 50% of each parental genome, (2) three BC3S1 populations which segregated simultaneously for the five regions of interest but were almost fully homozygous for the recipient genome on the eight chromosomes carrying no QTL and (3) three sets of QTL-NILs (BC3S3 lines) which differed from the recipient line only in one of the five regions. QTL detection was performed in each generation, in each genetic background and during 2 successive years for QTL-NILs. About half of the QTLs detected in QTL-NILs were detected in both years. Eight of the ten QTLs detected in RILs were recovered in the QTL-NILs with the genetic background used for the initial QTL mapping experiment, with the exception of two QTLs for fruit firmness. Several new QTLs were detected. In the two other genetic backgrounds, the number of QTLs in common with the RILs was lower, but several new QTLs were also detected in advanced generations.  相似文献   

4.
Quantitative trait loci (QTL) mapping is a step towards the identification of factors regulating traits such as fruit ascorbic acid content. A previously identified QTL controlling variations in tomato fruit ascorbic acid has been fine mapped and reveals that the QTL has a polygenic and epistatic architecture. A monodehydroascorbate reductase (MDHAR) allele is a candidate for a proportion of the increase in fruit ascorbic acid content. The MDHAR enzyme is active in different stages of fruit ripening, shows increased activity in the introgression lines containing the wild-type ( Solanum pennellii ) allele, and responds to chilling injury in tomato along with the reduced/oxidized ascorbate ratio. Low temperature storage of different tomato introgression lines with all or part of the QTL for ascorbic acid and with or without the wild MDHAR allele shows that enzyme activity explains 84% of the variation in the reduced ascorbic acid levels of tomato fruit following storage at 4 °C, compared with 38% at harvest under non-stress conditions. A role is indicated for MDHAR in the maintenance of ascorbate levels in fruit under stress conditions. Furthermore, an increased fruit MDHAR activity and a lower oxidation level of the fruit ascorbate pool are correlated with decreased loss of firmness because of chilling injury.  相似文献   

5.
Epidemiological and clinical studies indicate that a steady dietary intake of bioavailable lycopene, a C40 carotenoid and potent natural antioxidant, may be associated with a decreased incidence of prostate cancer in humans. Since fresh tomatoes and processed tomato products represent approximately 85% of the average human??s dietary lycopene intake, the identification of novel genetic factors which regulate high fruit lycopene content in tomato is imperative for the improvement of nutritional quality in this commercially valuable specialty crop. To understand the genetic control of the extraordinarily high fruit lycopene content in an accession (LA2093) of the tomato wild species Solanum pimpinellifolium, a quantitative trait locus (QTL) mapping study was conducted using a recombinant inbred line (RIL) population of a cross between LA2093 and a cultivated tomato (S. lycopersicum) breeding line, NCEBR-1. The parental lines, F1 progeny, and F7-F10 RIL populations were grown in replicated field trials in four successive years and evaluated for lycopene content as well as several other traits, including fruit fresh weight, soluble solids content, pH of puree, and plant maturity. The lycopene content of ripe fruit was estimated using three methods: high-performance liquid chromatography (HPLC), spectrophotometry, and colorimetric assays. Based on these measurements, QTL were identified and compared across generations. Among the QTL identified for lycopene, two QTL, located on chromosomes 7 and 12, had very large effects and were consistent across generations. The genomic intervals in which these two QTL reside do not correspond to known map positions of carotenoid biosynthetic genes, indicating that these QTL may represent novel alleles with potentially important implications for tomato breeding as well as increased understanding of carotenoid accumulation in tomato. Several QTL were also identified for fruit weight, soluble solids content and plant maturity. The potential implications of these results for tomato crop improvement are discussed.  相似文献   

6.
The near-isogenic line (NIL) TA1150 contains a 56-cM introgression from Lycopersicon chmielewskii chromosome 1 and has several interesting phenotypic characteristics including fruit with orange color, high levels of soluble solids, thick pericarp, small stem scars, and good firmness. A set of overlapping recombinant lines (subNILs) was developed and field tested to fine map the quantitative trait loci (QTL) controlling these traits. The results indicated that the solids, pericarp thickness, and firmness QTL are distinct from the color locus. Several of the QTL mapped in this study, including the soluble-solids QTL, probably correspond to QTL mapped in other wild species of tomato. However, analysis of a set of TA523 subNILs containing complementary introgressions from Lycopesicon hirsutum chromosome 1 suggests that this wild species may contain a different locus for improved soluble solids. Thus, it might be possible to combine the L. chmielewskii and L. hirsutum alleles for these loci in a single line with the potential for extremely highly soluble solids. The TA1150 subNIL TA1688 contains the smallest introgression of the solids locus (approximately 19 cM), as well as the pericarp thickness and firmness QTL, with a yield that was equivalent to two of the three control lines. Isolation of recombinant subNILs from TA1688 should break the linkage between orange color and high solids and provide a small introgressed segment for marker-assisted breeding and genetic improvement of processing tomato.  相似文献   

7.
Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit.  相似文献   

8.
The genetic basis of pear-shaped tomato fruit   总被引:1,自引:0,他引:1  
Molecular-marker analysis of a cross between yellow pear, a tomato variety bearing small, pear-shaped fruit, and the round-fruited, wild species, Lycopersicon pimpinellifolium LA1589, revealed that pear-shaped fruit is determined largely by a major QTL on chromosome 2 and, to a lesser extent, a minor QTL on chromosome 10. The locus on chromosome 2 was also detected in a cross between yellow pear and the round-fruited introgression line (IL2–5) which carried the distal portion of chromosome 2 from the Lycopersicon pennellii genome. Based on its map position, we propose that the locus detected on chromosome 2 is the same as a locus referred to as ovate in the early tomato literature (Linstrom 1926, 1927). The fruit-shape index (length/diameter) and neck constriction were highly correlated in both populations suggesting that ovate exerts control over both traits or that the genes for these traits are tightly linked on chromosome 2. Using two-way ANOVA test, the minor QTL on chromosome 10 showed no significant interaction with the ovate locus on chromosome 2 with respect to the fruit-shape index. For ovate round fruit was dominant to elongated fruit in the L. pimpinellifolium populations, but additive in the IL2–5 population. Thus far, no genes controlling fruit shape have been cloned. The molecular mapping of the ovate locus may ultimately lead to its isolation via map-based cloning. Received: 8 January 1999 / Accepted: 30 January 1999  相似文献   

9.
The RXopJ4 resistance locus from the wild accession Solanum pennellii (Sp) LA716 confers resistance to bacterial spot disease of tomato (S. lycopersicum, Sl) caused by Xanthomonas perforans (Xp). RXopJ4 resistance depends on recognition of the pathogen type III effector protein XopJ4. We used a collection of Sp introgression lines (ILs) to narrow the RXopJ4 locus to a 4.2-Mb segment on the long arm of chromosome 6, encompassed by the ILs 6-2 and 6-2-2. We then adapted or developed a collection of 14 molecular markers to map on a segregating F2 population from a cross between the susceptible parent Sl FL8000 and the resistant parent RXopJ4 8000 OC7. In the F2 population, a 190-kb segment between the markers J350 and J352 cosegregated with resistance. This fine mapping will enable both the identification of candidate genes and the detection of resistant plants using cosegregating markers. The RXopJ4 resistance gene(s), in combination with other recently characterized genes and a quantitative trait locus (QTL) for bacterial spot disease resistance, will likely be an effective tool for the development of durable resistance in cultivated tomato.  相似文献   

10.
fs3.1 is a major fruit shape (defined as the ratio of fruit length to fruit width) quantitative trait locus (QTL) originally detected in an intraspecific cross of Capsicum annuum between the blocky and elongated-fruited inbreds 'Maor' and 'Perennial', respectively. In addition to increasing fruit shape index, the 'Perennial' allele at fs3.1 increased fruit elongation and decreased fruit width and pericarp thickness. We verified the effect of fs3.1 in backcross inbred lines (BILs) derived from crossing 'Perennial' with 'Maor' and with a second blocky-type inbred line of C. annuum. To determine the effect of the fs3.1 region in additional Capsicum species, we constructed an advanced backcross population from the cross of 'Maor' and the oval-fruited Capsicum frutescens BG 2816 and an F2 of the introgression line IL 152 that contains an introgression of the fs3.1 region from Capsicum chinense PI 152225. QTLs for fruit shape, fruit width, and pericarp thickness, but not for fruit length, were detected in both crosses, indicating the conservation of the fs3.1 region as a QTL affecting fruit shape in pepper. We also tested tomato (Lycopersicon spp.) introgression lines containing the corresponding fs3.1 region from L. pennellii and L. hirsutum, but we did not detect a significant fruit shape QTL in these lines. The effect of fs3.1 on the growth of fruit dimensions varied with the genetic background. By measuring the length and width of ovaries and fruits of near-isogenic C. annuum lines that differ in fs3.1 during fruit development, we determined that fs3.1 controls shape predominantly by increasing the growth rate of the longitudinal axis in the first 2 weeks after pollination. However, in the crosses of C. annuum with C. frutescens and C. chinense, fs3.1 predominantly exerted its effect on the width dimension.  相似文献   

11.
The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies.  相似文献   

12.
Fresh fruit and vegetables are a major source of ascorbic acid (vitamin C), an important antioxidant for the human diet and also for plants. Ascorbic acid content in fruit exhibits a quantitative inheritance. Quantitative trait loci (QTL) for ascorbic acid content have been mapped in three tomato populations derived from crosses between cultivated tomato varieties (Solanum lycopersicum accessions) and three related wild species or subspecies. The first population consists of a set of introgression lines derived from Solanum pennellii, each containing a unique fragment of the wild species genome. The second population is an advanced backcross population derived from a cross between a cultivated tomato and a Solanum habrochaites (formerly Lycopersicum hirsutum) accession. The third population is a recombinant inbred line population derived from the cross between a cherry tomato line and a large fruited line. Common regions controlling ascorbic acid content have been identified on chromosomes 2, 8, 9, 10, and 12. In general, the wild alleles increased ascorbic acid content, but some improvement could also be provided by S. lycopersicum. Most QTLs appeared relatively stable over years and in different environments. Mapping of candidate genes involved in the metabolism of ascorbic acid has revealed a few colocations between genes and QTLs, notably in the case of a monodehydroascorbate reductase gene and a QTL present in two of the populations on chromosome 9 (bin 9-D), and a previously mapped GDP-mannose epimerase and a QTL on chromosome 9 (bin 9-J).  相似文献   

13.
Quantitative genetic analysis of flowering time in tomato.   总被引:1,自引:0,他引:1  
Artificial selection of cultivated tomato (Solanum lycopersicum L.) has resulted in the generation of early-flowering, day-length-insensitive cultivars, despite its close relationship to other Solanum species that need more time and specific photoperiods to flower. To investigate the genetic mechanisms controlling flowering time in tomato and related species, we performed a quantitative trait locus (QTL) analysis for flowering time in an F2 mapping population derived from S. lycopersicum and its late-flowering wild relative S. chmielewskii. Flowering time was scored as the number of days from sowing to the opening of the first flower (days to flowering), and as the number of leaves under the first inflorescence (leaf number). QTL analyses detected 2 QTLs affecting days to flowering, which explained 55.3% of the total phenotypic variance, and 6 QTLs for leaf number, accounting for 66.7% of the corresponding phenotypic variance. Four of the leaf number QTLs had not previously been detected for this trait in tomato. Colocation of some QTLs with flowering-time genes included in the genetic map suggests PHYB2, FALSIFLORA, and a tomato FLC-like sequence as candidate genes that might have been targets of selection during the domestication of tomato.  相似文献   

14.
In an effort to determine the genetic basis of exceptionally large tomato fruits, QTL analysis was performed on a population derived from a cross between the wild species Lycopersicon pimpinellifolium (average fruit weight, 1 g) and the L. esculentum cultivar var. Giant Heirloom, which bears fruit in excess of 1000 g. QTL analysis revealed that the majority (67%) of phenotypic variation in fruit size could be attributed to six major loci localized on chromosomes 1-3 and 11. None of the QTL map to novel regions of the genome-all have been reported in previous studies involving moderately sized tomatoes. This result suggests that no major QTL beyond those already reported were involved in the evolution of extremely large fruit. However, this is the first time that all six QTL have emerged in a single population, suggesting that exceptionally large-fruited varieties, such as Giant Heirloom, are the result of a novel combination of preexisting QTL alleles. One of the detected QTL, fw2.2, has been cloned and exerts its effect on fruit size through global control of cell division early in carpel/fruit development. However, the most significant QTL detected in this study (fw11.3, lcn11.1) maps to the bottom of chromosome 11 and seems to exert its effect on fruit size through control of carpel/locule number. A second major locus, also affecting carpel number (and hence fruit size), was mapped to chromosome 2 (fw2.1, lcn2.1). We propose that these two carpel number QTL correspond to the loci described by early classical geneticists as fasciated (f) and locule number (lc), respectively.  相似文献   

15.

Key message

Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding.

Abstract

Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.
  相似文献   

16.
The evaluation of organoleptic quality of tomato fruit requires physical, chemical and sensory analyses, which are expensive and difficult to assess. Therefore, their practical use in phenotypic selection is difficult. In a previous study, the genetic control of several traits related to organoleptic quality of fresh-market tomato fruit was investigated. Five chromosome regions strongly involved in organoleptic quality attributes were then chosen to be introgressed into three different recipient lines through marker-assisted selection. A marker-assisted backcross (MABC) strategy was performed, as all the favorable alleles for quality traits were provided by the same parental tomato line, whose fruit weight (FW) and firmness were much lower than those of the lines commonly used to develop fresh market varieties. Three improved lines were obtained after three backcrossing and two selfing generations. The implementation of the MABC scheme is described. The three improved lines were crossed together and with the recipient lines in a half-diallel mating scheme, and the simultaneous effect of the five quantitative trait locus (QTL) regions was compared in different genetic backgrounds. Significant effects of the introgressed regions and of the genetic backgrounds were shown. Additive effects were detected for soluble solid and reducing sugar content in two genetic backgrounds. A partially dominant effect on titratable acidity was detected in only one genetic background. In contrast, additive to dominant unfavorable effects of the donor alleles were detected for FW and locule number in the three genetic backgrounds. Recessive QTL effects on firmness were only detected in the two firmest genetic backgrounds. Comparison of the hybrids in the half-diallel gave complementary information on the effects of: (1) the alleles at the selected regions, (2) the genetic backgrounds and (3) their interaction. Breeding efficiency strongly varied according to the recipient parent, and significant interactions between QTLs and genetic backgrounds were shown for all of the traits studied.  相似文献   

17.
18.
In the processes of plant domestication and variety development, some traits are under direct selection, while others may be introduced by indirect selection or linkage. In the cultivated tomato (Lycopersicon esculentum = Solanum lycopersicum), and all other Solanaceae examined, chloroplasts are normally absent from subepidermal and mesophyll cells surrounding the leaf veins, and thus, veins appear clear upon subillumination. The tomato mutant obscuravenosa (obv), in contrast, contains chloroplasts in cells around the vein, and thus, veins appear as dark as the surrounding leaf tissue. Among tomato cultivars, the obv allele is common in processing varieties bred for mechanical harvest, but is otherwise rare. We traced the source of obv in processing tomatoes to the cultivar Earliana, released in the 1920s. The obv locus was mapped to chromosome 5, bin 5G, using introgression lines containing single chromosome segments from the wild species L. pennellii. This region also contains a quantitative trait locus (QTL) for plant height, pht5.4, which cosegregated with SP5G, a paralog of self-pruning (sp), the gene that controls the switch between determinate and indeterminate growth in tomato. The pht5.4 QTL was partially dominant and associated with a reduced percentage of red fruit at harvest. Our data suggest that the prevalence of obv in nearly all processing varieties may have resulted from its tight linkage to a QTL conferring a more compact, and horticulturally desirable, plant habit.  相似文献   

19.
Quantitative trait loci influencing fruit traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RIL) derived from a cross of the cultivated tomato, Lycopersicon esculentum with a related wild species Lycopersicon cheesmanii. One hundred thirty-two polymorphic RFLP loci spaced throughout the tomato genome were scored for 97 F8 RIL families. Fruit weight and soluble solids were measured in replicated trials during 1991 and 1992. Seed weight was measured in 1992. Significant (P<0.01 level) quantitative trait locus (QTL) associations of marker loci were identified for each trait. A total of 73 significant marker locus-trait associations were detected for the three traits measured. Fifty-three of these associations were for fruit weight and soluble solids, many of which involved marker loci signficantly associated with both traits. QTL with large effects on all three traits were detected on chromosome 6. Greater homozygosity at many loci in the RIL population as compared to F2 populations and greater genomic coverage resulted in increased precision in the estimation of QTL effects, and large proportions of the total phenotypic variance were explained by marker class variation at significant marker loci for many traits. The RIL population was effective in detecting and discriminating among QTL for these traits previously identified in other investigations despite skewed segregation ratios at many marker loci. Large additive effects were measured at significant marker loci. Lower fruit weight, higher soluble solids, and lower seed weight were generally associated with RFLP alleles from theL. cheesmanii parent.  相似文献   

20.
Quantitative trait locus (QTL) mapping for fruit weight and shape in pepper (Capsicum spp.) was performed using C. chinense and C. frutescens introgression lines of chromosomes 2 and 4. In chromosome 2, a single major fruit-weight QTL, fw2.1, was detected in both populations that explained 62% of the trait variation. This QTL, as well as a fruit-shape QTL, fs2.1, which had a more minor effect, were localized to the tomato fruit-shape gene ovate. The cloned tomato fruit-weight QTL, fw2.2, did not play a major role in controlling fruit size variations in pepper. In chromosome 4, two fruit-weight QTLs, fw4.1 and fw4.2, were detected in the same genomic regions in both mapping populations. In addition, a single fruit-shape QTL was detected in each of the mapping populations that co-localized with one of the fruit-weight QTLs, suggesting pleiotropy or close linkage of the genes controlling size and shape. fw2.1 and fw4.2 represent major fruit-weight QTLs that are conserved in the three Capsicum species analyzed to date for fruit-size variations. Co-localization of the pepper QTLs with QTLs identified for similar traits in tomato suggests that the pepper and tomato QTLs are orthologous. Compared to fruit-shape QTLs, fruit-weight QTLs were more often conserved between pepper and tomato. This implies that different modes of selection were employed for these traits during domestication of the two Solanaceae species.S. Zygier and A. Ben Chaim contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号