首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
1. Environmental cues associated with prey are known to increase predator foraging efficiency. Ladybird larvae are major predators of aphids. The sugary excretion of aphids (honeydew) has been proposed to serve as a prey‐associated cue for ladybird larvae. 2. Ladybird larvae are regularly found on the ground moving between plants or after falling off plants. The use of prey‐associated cues would be particularly beneficial for ladybird larvae on the ground in that such cues would help them to decide which plants to climb because aphids are patchily distributed within as well as amongst plants and, as a result, many plants are either not infested with aphids or do not host an aphid species of high nutritional value for ladybird larvae. 3. Laboratory experiments with larvae of Hippodamia convergens Guérin‐Méneville (Coleoptera: Coccinellidae) were carried out to explore whether honeydew accumulated on the ground is used as a foraging cue. The study also investigated whether, if honeydew is a foraging cue, larvae show differential responses to honeydew of high‐quality prey Acyrthosiphon pisum Harris compared with that of low‐quality prey Aphis fabae Scopoli (both: Homoptera: Aphididae). 4. Hippodamia convergens larvae stayed longer in areas containing honeydew but did not engage in longer bouts of searching. Furthermore, larvae did not distinguish between honeydew from high‐ and low‐quality aphid prey.  相似文献   

2.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

3.
Cannibalism (CANN) and intraguild predation (IGP) may provide energy and nutrients to individuals and eliminate potential competitors. These negative competitive interactions could also affect the coexistence of predatory species. The co‐occurrence of aphidophagous ladybird species in crops creates opportunities for CANN and IGP, especially when aphids become scarce. The Lotka–Volterra model predicts the coexistence of two species if intraspecific competition is stronger than interspecific interference interactions. Cycloneda sanguinea L. and Eriopis connexa (Germar) (both Coleoptera: Coccinellidae) coexist in sweet pepper crops in La Plata (Argentina) consuming mainly Myzus persicae (Sulzer) (Hemiptera: Aphididae). The present study used laboratory experiments to estimate levels of CANN and IGP by adults and larvae on eggs, and by adults on larvae, in both the presence and absence of prey (i.e., M. persicae), to explain the effect of prey on coexistence of these two predators. Levels of CANN by C. sanguinea and E. connexa were high in the absence of aphids, and decreased when prey was present. Intraguild predation was bidirectional and asymmetric. Adults and larvae of E. connexa were more voracious IG predators of C. sanguinea than vice versa, the former being the stronger IG predator and interference competitor. Eriopis connexa always won when larvae of the same instar were compared, whereas the larger larva always won when larvae were of different instars, regardless of species. In the presence of prey, CANN by both species decreased, but IGP by E. connexa on C. sanguinea remained high, suggesting that E. connexa could displace C. sanguinea via interspecific interference competition. Other factors potentially affecting the coexistence of C. sanguinea and E. connexa in sweet pepper crops are discussed.  相似文献   

4.
Prey for predators can fluctuate in abundance and in quality over time requiring predator strategies to cope with food shortage. Coccinellinae are often associated with sap-sucking pests that exhibit high population unpredictability such as aphids and psyllids. Eriopis connexa (Germar) (Coleoptera: Coccinellidae) is a predator with potential for biological control, especially a well-studied population which is resistant to pyrethroids used to control insect defoliators. Both larvae and adult E. connexa were provided ad libitum prey and non-prey foods (pollen and honey water solution) at increasing intervals from 1 to 10 days. Neonate larvae of E. connexa required eating prey daily to develop into adults. However, non-prey food such as honey water solution did prolong larval and adult survival but neither fulfilled larval development nor adult reproduction. Honey water solution promoted 100% adult survival up to 25 days in the adult stage without prey with oviposition returning after daily feeding on prey. Females subjected to increased feeding intervals over four days reduced oviposition and lived longer, but 10-day feeding intervals correlated with risk to adult survival. These results indicate the importance of non-food sources in E. connexa maintenance and the ability of larvae and adult females to compensate for prey scarcity.  相似文献   

5.
Abstract There are several examples of intraguild interactions among insect predators of aphids, but little is known regarding the effects of interactions on feeding and oviposition of individual competitors in a guild. In the laboratory, we determined the feeding and oviposition responses of a ladybird predator to its conspecific and heterospecific competitors in an aphidophagous guild. Gravid females of Menochilus sexmaculatus (Fabricius) (Coleoptera, Coccinellidae) reduced oviposition, but not feeding, when exposed to immobilised conspecific or Coccinella transversalis (Fabricius) (Coleoptera, Coccinellidae) individuals in the short‐term (3 h) and long‐term (24 h). Feeding and oviposition responses were not affected when M. sexmaculatus females were exposed to larvae or adults of Scymnus pyrocheilus Mulsant (Coleoptera, Coccinellidae) beetles or larvae of the syrphid fly Ischiodon scutellaris (Fabricius) (Diptera: Syrphidae). The ratio of eggs laid to numbers of aphids consumed by M. sexmaculatus females was also affected by the presence of conspecific or C. transversalis larvae. The results suggest that fecundity of this predator may be affected by both conspecific and heterospecific competitors in a patchy resource.  相似文献   

6.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

7.
Gnanvossou D  Hanna R  Dicke M 《Oecologia》2003,135(1):84-90
Carnivorous arthropods exhibit complex intraspecific and interspecific behaviour among themselves when they share the same niche or habitat and food resources. They should simultaneously search for adequate food for themselves and their offspring and in the meantime avoid becoming food for other organisms. This behaviour is of great ecological interest in conditions of low prey availability. We examined by means of an olfactometer, how volatile chemicals from prey patches with conspecific or heterospecific predators might contribute to shaping the structure of predator guilds. To test this, we used the exotic predatory mites Typhlodromalus manihoti and T. aripo, and the native predatory mite Euseius fustis, with Mononychellus tanajoa as the common prey species for the three predatory mite species. We used as odour sources M. tanajoa-infested cassava leaves or apices with or without predators. T. manihoti avoided patches inhabited by the heterospecifics T. aripo and E. fustis or by conspecifics when tested against a patch without predators. Similarly, both T. aripo and E. fustis females avoided patches with con- or heterospecifics when tested against a patch without predators. When one patch contained T. aripo and the other T. manihoti, females of the latter preferred the patch with T. aripo. Thus, T. manihoti is able to discriminate between odours from patches with con- and heterospecifics. Our results show that the three predatory mite species are able to assess prey patch profitability using volatiles. Under natural conditions, particularly when their food sources are scarce, the three predatory mite species might be involved in interspecific and/or intraspecific interactions that can substantially affect population dynamics of the predators and their prey.  相似文献   

8.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

9.
Animals experiencing a trade-off between predation risk and resource acquisition must accurately predict ambient levels of predation risk to maximize fitness. We measure this trade-off explicitly in larvae of the damselfly Enallagma antennatum, comparing consumption rates in the presence of chemical cues from predators and injured prey. Damselflies distinguished among types of chemical cues based on species of prey injured or eaten. Injured coexisting heterospecific and unknown heterospecific chemical cues did not reduce foraging relative to starved predator cues, while cues arising from predators eating a coexisting heterospecific did decrease foraging. This study shows a cost in terms of reduced foraging in response to chemical cues and further defines the ability of prey to respond discerningly to chemical cues.  相似文献   

10.
11.
To escape from predators, herbivorous prey could leave their current patch and relocate to an alternative patch. However, when other predators are present on the new patch, prey are again exposed to predation risk. Thus, patch leaving might be affected by the other predators. We studied patch leaving of pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in response to ladybird larvae Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on broad bean Vicia faba L. shoots that were offered as patches for aphids. We tested whether shoot leaving was affected by the presence of predators on alternative shoots under laboratory conditions. Odors from alternative shoots were evaluated as possible cues used by aphids to assess predation risk on the shoots. We exposed aphids to odors from alternative shoots with conspecifics plus either adult or larval ladybirds or larval green lacewings Mallada desjardinsi Navas (Neuroptera: Chrysopidae). Shoot leaving was reduced only when adult ladybirds were present on the alternative shoots compared with controls (i.e., no predators on the alternative shoots). Odors of both adult ladybirds and of conspecifics being attacked by ladybird larvae were required for reduced leaving. Hence, predation risks on current and alternative patches might affect the antipredator responses of aphids.  相似文献   

12.
The quality of different species of aphids as food for aphidiphagous ladybird beetles varies greatly. The optimal oviposition theory predicts that a female should lay eggs preferentially in patches of suitable prey and should be reluctant to oviposit in patches of less suitable prey. A no‐choice experiment was used to test whether aphids (Homoptera: Aphididae) of different suitability influence the oviposition behaviour of the two‐spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae). The results indicate that A. bipunctata females are not more reluctant to lay eggs in the presence of moderately suitable compared to highly suitable aphids. However, females laid fewer eggs in the presence of toxic aphids.  相似文献   

13.
Although the abilities of prey to detect and respond to chemical substances associated with a predator have been widely reported, the factors promoting the evolution of responses to prey alarm cues vs. predator odours are still vague. In this article, we combined field research with laboratory experiments to explore which chemical substance associated with predator activity (predator odour, conspecific or heterospecific alarm substances) induces defence responses in the aquatic oligochaete Stylaria lacustris, which is vulnerable to common littoral predators. The field results indicated that predators injure the oligochaetes and a great proportion, up to 45% of individuals in the population, were found to be damaged. The results of the laboratory experiments revealed that chemical odours from damselfly larvae feeding on S. lacustris did not induce the defence response in the oligochaetes. On the contrary, oligochaetes detected and responded to alarm substances from damaged conspecifics alone and substances from damaged cladoceran Daphnia magna. We discussed conditions favouring the responses to damage released prey alarm cues instead of predator odours in Stylaria lacustris. Our data suggest that the selection of responses to alarm cues from damaged prey vs. predator odours may be dependent on three factors: (1) non-species-specific predation, (2) divergence of food niche of the different stages of the predator and (3) complex food web with multiple predators. Handling editor: S. Declerk  相似文献   

14.
Most terrestrial plants are associated with arbuscular mycorrhizal fungi but research on the effects of arbuscular mycorrhizal symbiosis on aboveground plant‐associated organisms is scarcely expanded to tri‐trophic systems. The arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. enhances fitness of the two‐spotted spider mite Tetranychus urticae Koch and its natural enemy, the predatory mite Phytoseiulus persimilis Athias‐Henriot, via changes in host plant and prey quality, respectively. In the present study, it is hypothesized that gravid P. persimilis are able to recognize arbuscular mycorrhiza‐enhanced prey quality and behave accordingly. In two experiments, on leaf arenas and in cages, P. persimilis is given a choice between prey patches deriving from mycorrhizal and non‐mycorrhizal bean plants (Phaseolus vulgaris L.) as feeding and oviposition sites. The use of cages allows the manipulation of distinct patch components acting as possible cues to guide predator foraging and oviposition behaviours, such as eggs produced and traces (webbing and faeces) left by the spider mite females. Both experiments show that P. persimilis preferentially resides close to prey fed on mycorrhizal plants. The cage experiment reveals that P. persimilis uses direct prey‐related cues, mainly derived from eggs, to discern prey quality and preferentially oviposits close to prey from mycorrhizal plants. This is the first study to document that predators recognize arbuscular mycorrhiza‐induced changes in herbivorous prey quality via direct prey‐related cues.  相似文献   

15.
The effects of patch quality on the foraging behaviour of an anthocorid predator Orius sauteri (Poppius) were compared between sexes. Prior experience in patches was also studied to determine whether this was a factor affecting oviposition decisions. Patch quality affected patch residence time differently for the two sexes; females stayed much longer in a patch with prey (60 Thrips palmi larvae) than a patch without prey, while males did not remain in any patch for extended periods. Most of the females remained in or moved to patches with prey, whereas males dispersed, irrespective of patch quality. Both females released in patches with prey and females released in patches without prey deposited more eggs per hour in patches with prey than in patches without prey. Females released in patches without prey laid eggs in patches with prey at higher rates than did females released in patches with prey. Causes for the sex difference in patch residence time and allocation are discussed in relation to optimal foraging theory. The significance of selective oviposition and the role of experience in oviposition decisions within heterogeneous environments are also discussed.  相似文献   

16.
In theory, selection favours predators that select prey in order to maximise reproductive success. We studied the association between preference and performance of the generalist predator Orius laevigatus with respect to two prey species: spider mites ( Tetranychus urticae ) and western flower thrips ( Frankliniella occidentalis ). Under ample prey supply, the predators had higher maximum reproductive success (measured as intrinsic population growth rate r ) on thrips than on spider mites; hence thrips represent a higher prey quality to the bugs. This was at odds with the observed preference of the predatory bug for plants (patches) with high densities of spider mites to plants with moderate densities of thrips in release-recapture experiments. Thus, prey quality does not suffice to explain the preference of predators for plants with prey. The quality of a patch as an oviposition site (i.e. the number of eggs produced on a patch per bug per day) also did not match preference patterns. Hence, patch preference was not correlated to prey quality or oviposition rate on prey patches. However, patch productivity, i.e. the total number of offspring surviving until adulthood that can be produced by one female on a patch, was correlated with preference. This was further tested by offering the predators a choice between plants with high densities of spider mites and plants with high densities of thrips in an independent set of release-recapture experiments. These two types of prey patches were found equivalent in terms of patch productivity. Indeed, the predators showed no preference for either of the two types of patches, which is in agreement with our predictions. This suggests that the predatory bugs select patches based on patch productivity rather than on prey quality or oviposition rate on a patch.  相似文献   

17.
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.  相似文献   

18.
《Journal of Asia》2023,26(2):102044
Organisms live in complex systems where they simultaneously balance responses to multiple factors. Insects are dealing with indirect pressures from predators under the influence of temperature. Currently, little is known about how they balance these factors. Under laboratory conditions, we investigated the effects of the predator Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) cues and temperature (23, 28, and 33 °C) on the foraging and oviposition behavior of the parasitoid Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) using the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) as a host. In all trials, the frequency and duration of stinging, walking, or stationary behavior of A. gifuensis were not influenced by H. axyridis cues. However, in trials with predator cues, A. gifuensis produced less offspring than trials without predator cues. On the other hand, the frequency of A. gifuensis stinging, walking, or stationary behavior, and the number of A. gifuensis larvae increased with rising temperature. Specially, when the predator cues were present, parasitoid responded to rising temperatures by increasing frequency of each behavior and an increase in offspring number. Our findings indicate that A. gifuensis might show flexible foraging and oviposition behavior in response to H. axyridis associated cues and different temperatures. Thus, the effects of both temperature and H. axyridis cues should be considered when assessing the foraging outcomes of A. gifuensis prior to combining these two enemies in aphid management practice.  相似文献   

19.
To define general principles of predator‐prey dynamics in an estuarine subtidal environment, we manipulated predator density (the blue crab, Callinectes sapidus) and prey (the clam, Macoma balthica) patch distribution in large field enclosures in the Rhode River subestuary of the central Chesapeake Bay. The primary objectives were to determine whether predators forage in a way that maximizes prey consumption and to assess how their foraging success is affected by density of conspecifics. We developed a novel ultrasonic telemetry system to observe behavior of individual predators with unprecedented detail. Behavior of predators was more indicative of optimal than of opportunistic foraging. Predators appeared responsive to the overall quality of prey in their habitat. Rather than remaining on a prey patch until depletion, predators appeared to vary their patch use with quality of the surrounding environment. When multiple (two) prey patches were available, residence time of predators on a prey patch was shorter than when only a single prey patch was available. Predators seemed to move among the prey patches fairly regularly, dividing their foraging time between the patches and consuming prey from each of them at a similar rate. That predators more than doubled their consumption of prey when we doubled the number of prey (by adding the second patch) is consistent with optimizing behaviors ‐ rather than with an opportunistic increase in prey consumption brought about simply by the addition of more prey. Predators at high density, however, appeared to interfere with each other's foraging success, reflected by their lower rates of prey consumption. Blue crabs appear to forage more successfully (and their prey to experience higher mortality) in prey patches located within 15–20 meters of neighboring patch, than in isolated patches. Our results are likely to apply, at least qualitatively, to other crustacean‐bivalve interactions, including those of commercial interest; their quantitative applicability will depend on the mobility of other predators and the scale of patchiness they perceive.  相似文献   

20.
Intraguild predation (IGP) can be an important factor influencing the effective- ness of aphid natural enemies in biological control. In particular, aphid parasitoid foraging could be influenced by the presence of predators. This study investigated the effect of larvae of the predatory hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) and the multicolored Asian ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on the foraging behavior of the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae) in choice experiments using a leaf disc bioassay. Wasp response to chemical tracks left by those predator larvae was also tested. Parasitoid behavior was recorded using the Observer (Noldus Information Technology, version 5.0, Wageningen, the Netherlands). The experiments were conducted under controlled environmental conditions using leaves of the broad bean plant, Viciafaba L. (Fabaceae) with Myzus persicae Sulzer (Homoptera: Aphididae) as the host complex. A. ervi females avoided aphid patches when larvae of either predator were present. A similar avoidance response was shown by A. ervi to aphid patches with E. balteatus larval tracks, whereas no significant response was observed to tracks left by H. axyridis larvae. It was concluded that IG predator avoidance shown by the aphid parasitoid A. ervi may be a factor affecting their distribution among host patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号