首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

2.
Erythrocytes from individuals with sickle cell anemia have previously been shown to have increased levels of intracellular oxidants and increased oxidative damage. Oxidative damage has been implicated in the events leading to the painful crises and hemolytic anemia found in sickle cell anemia. Since the pentose phosphate pathway (PPP) is an important source of reducing capacity in erythrocytes, we have investigated the fluxes through the PPP in normal and sickle cell erythrocytes using [2-13C]D-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy. Our results indicate that sickle cell erythrocytes have a flux through the PPP of 0.13±0.02 μmol/h per ml erythrocytes that is comparable to that in normal erythrocytes, 0.21±0.02 μmol/h per ml erythrocytes. However, when stimulated with methylene blue, sickle cell erythrocytes show a decreased response, 0.59±0.10 μmol/h per ml erythrocytes, compared to normal erythrocytes, 1.64±0.10 μmol/h per ml erythrocytes. When homogeneous populations of sickle cell erythrocytes are isolated by density gradient centrifugation, the rate of flux through the PPP in methylene blue-stimulated sickle cell erythrocytes, 1.16±0.16 μmol/h per ml erythrocytes, approaches that in methylene blue-stimulated normal erythrocytes. In addition, by analyzing the dose response to methylene blue, we have found that the decreased stimulation of the PPP by methylene blue in heterogeneous populations of sickle cell erythrocytes is a failure of methylene blue to simulate the PPP rather than a deficiency in the PPP in sickle cell erythrocytes.  相似文献   

3.
The protective effects of fructose-1,6-biphosphate (FBP) during hypoxia/ischemia are thought to result from uptake and utilization of FBP as a substrate for glycolysis or from stimulation of glucose metabolism. To test these hypotheses, we measumed CO2 and lactate production from [6-14C]glucose, [1-14C]glucose, and [U-14C]FBP in normoxic and hypoxic cultured astrocytes with and without FBP present. FBP had little effect on CO2 production by glycolysis, but increased CO2 production by the pentose phosphate pathway. Labeled FBP produced very small amounts of CO2. Lactate production from [1-, and 6-14C]glucose increased similarly during hypoxic hypoxia; the increase was independent of added FBP. Labeled lactate from [U-14C]FBP was minimal. We conclude that exogenous FBP is not used by astrocytes as a substrate for glycolysis and that FBP alters glucose metabolism.  相似文献   

4.
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-13C]glucose+[4,5,6-13C]glucose, [2-13C]glucose+[4,5,6-13C]glucose, and [3-13C]glucose+[4,5,6-13C]glucose and developed a new method to measure 13C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells.  相似文献   

5.
The use of parallel labeling experiments for 13C metabolic flux analysis (13C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-13C]glucose and mixtures of [1-13C]glucose and [U-13C]glucose, four novel tracers were applied in this study: [2,3-13C]glucose, [4,5,6-13C]glucose, [2,3,4,5,6-13C]glucose and a mixture of [1-13C]glucose and [4,5,6-13C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-13C]glucose+20% [U-13C]glucose, while [4,5,6-13C]glucose and [5-13C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.  相似文献   

6.
Developing kernels of the inbred maize line W22 were grown in sterile culture and supplied with a mixture of [U-13C6]glucose and unlabeled glucose during three consecutive intervals (11-18, 18-25, or 25-32 days after pollination) within the linear phase of starch formation. At the end of each labeling period, glucose was prepared from starch and analyzed by 13C isotope ratio mass spectrometry and high-resolution (13)C NMR spectroscopy. The abundances of individual glucose isotopologs were calculated by computational deconvolution of the NMR data. [1,2-(13)C2]-, [5,6-(13)C2]-, [2,3-(13)C2]-, [4,5-(13)C2]-, [1,2,3-(13)C3]-, [4,5,6-(13)C3]-, [3,4,5,6-(13)C4]-, and [U-(13)C6]-isotopologs were detected as the major multiple-labeled glucose species, albeit at different normalized abundances in the three intervals. Relative flux contributions by five different pathways in the primary carbohydrate metabolism were determined by computational simulation of the isotopolog space of glucose. The relative fractions of some of these processes in the overall glucose cycling changed significantly during maize kernel development. The simulation showed that cycling via the non-oxidative pentose phosphate pathway was lowest during the middle interval of the experiment. The observed flux pattern could by explained by a low demand for amino acid precursors recruited from the pentose phosphate pathway during the middle interval of kernel development.  相似文献   

7.
A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.  相似文献   

8.
Protein production of mammalian-cell culture is limited due to accumulation of waste products such as lactate, CO(2), and ammonia. In this study, the intracellular fluxes of hybridoma cells are measured to determine the amount by which various metabolic pathways contribute to the secretion of waste products derived from glucose. Continuously cultured hybridoma cells are grown in medium containing either 1-(13)C-, 2-(13)C-, or 6-(13)C-glucose. The uptake and production rates of amino acids, glucose, ammonia, O(2), and CO(2) as well as the cellular composition are measured. In addition, the (13)C distribution of the lactate produced and alanine produced by the hybridomas is determined by (1)H-NMR spectroscopy, and the (13)CO(2)/(12)CO(2) ratio is measured by on-line mass spectrometry. These data are used to calculate the intracellular fluxes of the glycolysis, the pentose phosphate pathway, the TCA cycle, and fluxes involved in amino acid metabolism. It is shown that: (i) approximately 20% of the glucose consumed is channeled through the pentose shunt; (ii) the glycolysis pathway contributes the most to lactate production, and most of the CO(2) is produced by the TCA cycle; (iii) the pyruvate-carboxylase flux is negligibly small; and (iv) the malic-enzyme flux is estimated to be 10% of the glucose uptake rate. Based on these flux data suggestions are made to engineer a more efficient glucose metabolism in mammalian cells.  相似文献   

9.
The fraction of glucose 6-phosphate metabolism in isolated intact chloroplasts of Pisum sativum in the dark that occurs via the oxidative pentose phosphate pathway has been estimated from the distribution of 14C from specifically labelled glucose-[14C] supplied to the chloroplasts.  相似文献   

10.
Exposure of rat pheochromocytoma PC12 cells to 0.1 mM 6-aminonicotinamide (6AN) for 24 hours resulted in a 500-fold increase in 6-phosphogluconate indicating active metabolism of glucose via the oxidative enzymes of the pentose phosphate pathway. Amounts of 6-phosphogluconate that accumulated in 6AN-treated cells at 24 hours were significantly increased by treatment of the cells with nerve growth factor (NGF) (100 ng 7S/ml) suggesting that metabolism of glucose via the pentose pathway at this time was enhanced by NGF. This stimulation of metabolism via the pentose pathway is probably a late response to NGF because initial rates of 6-phosphogluconate accumulation in 6AN-treated cells were the same in the presence and absence of NGF. Moreover, amounts of14CO2 generated from 1-[14CO2]glucose during the initial six hour incubation period were the same in control and NGF-treated cells. Specific activities of hexose phosphates labeled from 1-[14CO2]glucose were also the same in control and NGF-treated cells. The observation that 6AN inhibited metabolism via the pentose phosphate pathway but failed to inhibit NGF-stimulated neurite outgrowth suggests that NADPH required for lipid biosynthesis accompanying NGF-stimulated neurite outgrowth from PC12 cells can be derived from sources other than, or in addition to, the oxidative enzymes of the pentose phosphate pathway.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

11.
Information displayed by homonuclear and heteronuclear spin-coupling patterns in 13C- and 1H-MR spectra allowed us to identify the major lactate isotopomers produced either from [1-(13)C]-glucose or from [2-(13)C]-glucose by human erythrocytes. Relative concentrations of detectable isotopomers were determined by integrating the corresponding MR signals. The interpretation of these data in terms of the fractional glucose metabolised through glycolysis and pentose phosphate pathway was performed by a computer simulation of the metabolism that took into account metabolic schemes pertaining to glycolysis and to the F-type of pentose phosphate pathway. The simulation was organised in a way to anticipate the populations of the isotopomers produced from any precursor at a priori established metabolic steady state. By the simulation, isotopomer populations were determined according to different values of pentose cycle, defined as the flux of glyceraldehyde 3-phosphate originating from pentose phosphate pathway at unitary glucose uptake. The populations of the isotopomers originating from [2-(13)C]-glucose were described by polynomials, and ratios between the polynomials were used in conjunction with 13C- and 1H-MR data to determine pentose cycle values. The knowledge of glucose uptake and of pentose cycle value allowed us to perform accurate measurement of the pentose phosphate pathway flux, of the hexokinase and phosphofructokinase fluxes as well as, indirectly, of the carbon dioxide production.  相似文献   

12.
Improved design of metabolic flux estimation using mixed label 13C labeling experiments and identifiability analysis motivated re-examination of metabolic fluxes during anaerobic fermentation in the Escherichia coli. Comprehensive metabolic flux maps were determined by using a mixture of differently labeled glucose and compared to conventional flux maps obtained using extracellular measurements and comprehensive metabolic flux maps obtained using only U-13C glucose as the substrate. As expected, conventional flux analysis performs poorly in comparison to 13C-MFA, especially in the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Identifiability analysis indicated and experiments confirmed that a mixture of 10% U-l3C glucose, 25% 1-13C glucose, and 65% naturally labeled glucose significantly improved the statistical quality of all calculated fluxes in the PP pathway, the EMP pathway, the anaplerotic reactions, and the tricarboxylic acid cycle. Modifying the network topology for the presence and absence of the Entner-Doudoroff pathway and the glyoxylate shunt did not affect the value or quality of estimated fluxes significantly. Extracellular measurement of formate production was necessary for the accurate estimation of the fluxes around the formate node.  相似文献   

13.
Thermophiles are increasingly used as versatile hosts in the biotechnology industry. One of the key advantages of thermophiles is the potential to achieve high rates of feedstock conversion at elevated temperatures. The recently isolated Geobacillus strain LC300 grows extremely fast on xylose, with a doubling time of less than 30 min. In the accompanying paper, the genome of Geobacillus LC300 was sequenced and annotated. In this work, we have experimentally validated the metabolic network model using parallel 13C-labeling experiments and applied 13C-metabolic flux analysis to quantify precise metabolic fluxes. Specifically, the complete set of singly labeled xylose tracers, [1-13C], [2-13C], [3-13C], [4-13C], and [5-13C]xylose, was used for the first time. Isotopic labeling of biomass amino acids was measured by gas chromatography mass spectrometry (GC–MS). Isotopic labeling of carbon dioxide in the off-gas was also measured by an on-line mass spectrometer. The 13C-labeling data was then rigorously integrated for flux elucidation using the COMPLETE-MFA approach. The results provided important new insights into the metabolism of Geobacillus LC300, its efficient xylose utilization pathways, and the balance between carbon, redox and energy fluxes. The pentose phosphate pathway, glycolysis and TCA cycle were found to be highly active in Geobacillus LC300. The oxidative pentose phosphate pathway was also active and contributed significantly to NADPH production. No transhydrogenase activity was detected. Results from this work provide a solid foundation for future studies of this strain and its metabolic engineering and biotechnological applications.  相似文献   

14.
Abstract: Cerebral pentose phosphate pathway (PPP) activity has been linked to NADPH-dependent anabolic pathways, turnover of neurotransmitters, and protection from oxidative stress. Research on this potentially important pathway has been hampered, however, because measurement of regional cerebral PPP activity in vivo has not been possible. Our efforts to address this need focused on the use of a novel isotopically substituted glucose molecule, [1,6-13C2,6,6-2H2]glucose, in conjunction with microdialysis techniques, to measure cerebral PPP activity in vivo, in freely moving rats. Metabolism of [1,6-13C2,6,6-2H2]glucose through glycolysis produces [3-13C]lactate and [3-13C,3,3-2H2]lactate, whereas metabolism through the PPP produces [3-13C,3,3-2H2]lactate and unlabeled lactate. The ratios of these lactate isotopomers can be quantified using gas chromatography/mass spectrometry (GC/MS) for calculation of PPP activity, which is reported as the percentage of glucose metabolized to lactate that passed through the PPP. Following addition of [1,6-13C2,6,6-2H2]glucose to the perfusate, labeled lactate was easily detectable in dialysate using GC/MS. Basal forebrain and intracerebral 9L glioma PPP values (mean ± SD) were 3.5 ± 0.4 (n = 4) and 6.2 ± 0.9% (n = 4), respectively. Furthermore, PPP activity could be stimulated in vivo by addition of phenazine methosulfate, an artificial electron acceptor for NADPH, to the perfusion stream. These results show that the activity of the PPP can now be measured dynamically and regionally in the brains of conscious animals in vivo.  相似文献   

15.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

16.
The flux through the oxidative pentose phosphate (PP) pathway was estimated in Bacillus clausii, Saccharomyces cerevisiae, and Penicillium chrysogenum growing in chemostats with [1-(13)C]glucose as the limiting substrate. The flux calculations were based on a simple algebraic expression that is valid irrespective of isotope rearrangements arising from reversibilities of the reactions in the PP pathway and the upper part of the Embden-Meyerhof-Parnas pathway. The algebraically calculated fluxes were validated by comparing the results with estimates obtained using a numerical method that includes the entire central carbon metabolism. Setting the glucose uptake rate to 100, the algebraic expression yielded estimates of the PP pathway flux in B. clausii, S. cerevisiae, and P. chrysogenum of 20, 42, and 75, respectively. These results are in accordance with the results from the numerical method. The information on the labeling patterns of glucose and the proteinogenic amino acids were obtained using gas chromatography / mass spectrometry, which is a very sensitive technique, and therefore only a small amount of biomass is needed for the analysis. Furthermore, the method developed in this study is fast and readily accessible, as the calculations are based on a simple algebraic expression.  相似文献   

17.
一种中间代谢途径代谢通量的定量分析方法   总被引:2,自引:0,他引:2  
13C标记的碳源,用二维核磁共振技术(1H-13C,HMQC)测定代谢中产生的氨基酸标记模式,研究对中间代谢途径胞内代谢通量进行定量分析的方法.通过开发软件包,改进同位素分布的数学模型,提出了反应映射矩阵(RMM)等概念.由简化算法,提高程序的执行效率,建立了定量分析胞内代谢通量的平台.代谢模型涉及了糖酵解途径、磷酸戊糖途径、三羧酸循环、几种回补反应、发酵途径和氨基酸合成途径.  相似文献   

18.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   

19.
A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and is tolerant to high ethanol concentrations (10%, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C‐based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio‐ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner–Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accurately determined using amino acid labeling. When growth conditions were switched from aerobic to micro‐aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)?1 h?1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64 ± 3 to 25 ± 2 and from 30 ± 2 to 19 ± 2, respectively. The carbon flux under micro‐aerobic growth was directed to ethanol, L ‐lactate (>99% optical purity), acetate, and formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38 ± 0.07 mol mol?1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yield by approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production. Biotechnol. Bioeng. 2009;102: 1377–1386. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose‐6‐phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+] ratios whereas the effect of ZWF1 overexpression alone in the wild‐type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl‐CoA C‐acetyltransferase (ERG10), truncated HMG‐CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L–1 of amorphadiene (3.7‐fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号