首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.  相似文献   

2.
We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene -type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals.  相似文献   

3.
A new species of Heliconius and a new geographical race of Heliconius melpomene are described from the vicinity of Mocoa, Dpto. Putumayo, Colombia, based on molecular and morphological characters. The new species, H. tristero , is a close relative of H. cydno , a geographically differentiated species which lacks red coloration and engages in Müllerian mimicry with other blue and yellow Heliconius species in Central and northwestern South America. H. tristero has switched mimetic associations, instead mimicking the local, sympatric forms of two widespread mimetic species, H. erato and H. melpomene. This discovery provides evidence that the splinter species H. heurippa, H. tristero and H. timareta represent phenotypically divergent members of the H. cydno group that are endemic to successive river valleys on the eastern slope of the northern Andean Cordillera. The nominal taxon Heliconius amaryllis bellula Stichel, currently misapplied to both H. tristero and H. melpomene populations from the Mocoa region of Colombia, is considered here to represent a hybrid between H. heurippa and H. tristero. The Mocoa melpomene race is formally named Heliconius melpomene mocoa , new subspecies.  相似文献   

4.
Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group (Heliconius cydno and Heliconius sapho) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species (Heliconius melpomene and Heliconius erato, respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context-strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.  相似文献   

5.
The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought-but rarely demonstrated-to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between Müllerian co-mimics, predicted to exert mutual selection pressures, strongly suggests coevolution. Our results therefore support a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change.  相似文献   

6.
When species converge in their colour patterns because of mimicry, and those patterns are also used in mate recognition, there is a probability of conflicting selection pressures. Closely related species that mimic one another are particularly likely to face such confusion because of similarities in their courtship behaviour and ecology. We conducted experiments in greenhouse conditions to study interspecific attraction between two mimetic butterfly species, Heliconius erato and Heliconius melpomene. Both species spent considerable time approaching and courting females of the co-mimic species. Experiments using wing models demonstrated the importance of colour pattern in this interspecific attraction. Although males of H. melpomene were attracted to their co-mimics as much as to their own females, H. erato males were more efficient at distinguishing conspecifics, possibly using wing odours. Although preliminary, these results suggest that the use of additional cues may have evolved in H. erato to reduce the cost of convergence in visual signals with H. melpomene. Overall, our results showed that there might be a cost of mimetic convergence because of a reduction in the efficiency of species recognition. Such cost may contribute to explain the apparently stable diversity in Müllerian mimetic patterns in many tropical butterfly assemblages.  相似文献   

7.
In Heliconius butterflies, it has been proposed that speciation occurs through a combination of divergence in ecological habitat preferences and mimetic colour patterns. Here we test this hypothesis by investigating a parapatric form of the widespread species Heliconius erato. Mendelian (colour patterns) and molecular genetic data permit us to address hypotheses about introgression and genetic differentiation between different populations. Combined analysis of colour pattern, microsatellite loci and mitochondrial DNA showed that Heliconius erato venus and Heliconius erato chestertonii form a bimodal hybrid zone implying partial reproductive isolation. In a sample of 121 individuals collected in sympatry, 25% were hybrids representing a significant deficit of heterozygotes compared to the Hardy-Weinberg expectation. Seven microsatellite loci, analysed for a subset of these individuals, showed marked differentiation between the parental taxa, and unambiguously identified two genotypic clusters concordant with our phenotypic classification of individuals. Mitochondrial DNA analysis showed H. erato venus as a monophyletic group well differentiated from H. erato chestertonii, implying a lack of historical introgression between the populations. Heliconius erato chestertonii is therefore an incipient species that maintains its integrity despite high levels of hybridization. Moreover, H. erato chestertonii is found at higher altitudes than other races of H. erato and has a distinct colour pattern and mimetic relationship. Hence, there are now two examples of parapatric incipient species related to H. erato, H. himera and H. erato chestertonii, both of which are associated with higher altitudes, more arid habitats and distinct mimetic relationships. This implies that parapatric habitat adaptation is a likely cause of speciation in this group.  相似文献   

8.
9.
Abstract Shared ancestral variation and introgression complicates the reconstruction of phylogenetic relationships among closely related taxa. Here we use overall genomic compatibility as an alternative estimate of species relationships in a group where divergence is rapid and genetic exchange is common. Heliconius heurippa, a butterfly species endemic to Colombia, has a colour pattern genetically intermediate between H. cydno and H. melpomene: its hindwing is nearly indistinguishable from that of H. melpomene and its forewing band is an intermediate phenotype between both species. This observation has lead to the suggestion that the pattern of H. heurippa arose through hybridization. We present a genetic analysis of hybrid compatibility in crosses between the three taxa. Heliconius heurippa x H. cydno and female H. melpomene x male H. heurippa yield fertile and viable F1 hybrids, but male H. melpomene x female H. heurippa crosses yield sterile F1 females. In contrast, Haldane's rule has previously been detected between H. melpomene and H cydno in both directions. Therefore, H. heurippa is most closely related to H. cydno, with some evidence for introgression of genes from H. melpomene. The results are compatible with the hypothesis of a hybrid origin for H. heurippa. In addition, backcrosses using F1 hybrid males provide evidence for a large Z(X)-chromosome effect on sterility and for recessive autosomal sterility factors as predicted by Dominance Theory.  相似文献   

10.
Differences in habitat use can bridge early and late stages of speciation by initiating assortative mating. Heliconius colour pattern races might select habitats over which each pattern confers a relative fitness advantage because signal efficacy of wing patterns can vary by environment. Thus habitat preferences could serve to promote the evolution of mimetic colour patterns for mate choice. Here I compare colour pattern genotype and phenotype frequencies to environmental variation across the H. erato hydara x H. erato erato hybrid zone in French Guiana to determine whether races exhibit habitat preferences. I found that genotype and phenotype frequencies correspond to differences in land cover moreso than to other environmental factors. Temporal shifts in colour pattern genotypes, phenotypes and land cover also were associated at individual sample sites, which further suggests that H. erato races differ in habitat use and that habitat preferences may promote speciation among Heliconius butterflies.  相似文献   

11.
Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Miillerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm = 4.326) than the reverse (2Nm = 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm = 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences.  相似文献   

12.
Homoploid hybrid speciation (HHS) is the establishment of a novel species through introgressive hybridization without a change in chromosome number. We discuss different routes by which this might occur and propose a novel term, 'hybrid trait speciation', which combines the idea that hybridization can generate adaptive novelty with the 'magic trait' model of ecological speciation. Heliconius butterflies contain many putative examples of hybrid colour patterns, but only recently has the HHS hypothesis been tested explicitly in this group. Molecular data has shown evidence for gene flow between many distinct species. Furthermore, the colour pattern of Heliconius heurippa can be recreated in laboratory crosses between Heliconius melpomene and Heliconius cydno and, crucially, plays a role in assortative mating between the three species. Nonetheless, although the genome of H. heurippa shows evidence for hybridization, it is not a mosaic of the two parental species. Instead, ongoing hybridization has likely blurred any signal of the original speciation event. We argue that where hybridization leads to novel adaptive traits that also cause reproductive isolation, it is likely to trigger speciation.  相似文献   

13.
To understand speciation we need to study the genetics and ecology of intermediate cases where interspecific hybridization still occurs. Two closely related species of Heliconius butterflies meet this criterion: Heliconius himera is endemic to dry forest and thorn scrub in southern Ecuador and northern Peru, while its sister species, H. erato , is ubiquitous in wet forest throughout south and central America. In three known zones of contact, the two species remain distinct, while hybrids are found at low frequency. Collections in southern Ecuador show that the contact zone is about 5 km wide, half the width of the narrowest clines between colour pattern races of H. erato. The narrowness of this dine argues that very strong selection (s ≅ 1) is maintaining the parapatric distributions of these two species. The zone is closely related with a habitat transition from wet to dry forest, which suggests that the narrow zone of parapatry is maintained primarily by ecological adaptation. Selection on colour pattern loci, assortative mating and hybrid inviability may also be important. The genetics of hybrids between the two species shows that the major gene control of pattern elements is similar to that found in previous studies of H. erato races, and some of the loci are homologous. This suggests that similar genetic processes are involved in the morphological divergence of species and races. Evidence from related Heliconius supports a hypothesis that ecological adaptation is the driving force for speciation in the group.  相似文献   

14.
Homoploid speciation generates species without a change in chromosome number via introgressive hybridization and has been considered rare in animals. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has a color pattern that can be recreated by introgression of the H. melpomene red band into an H. cydno genetic background. Wild H. heurippa males show assortative mating based on color pattern and we here investigate the origin of this preference by studying first-generation backcross hybrids between H. melpomene and H. cydno that resemble H. heurippa . These hybrids show assortative mating preferences, showing a strong preference for their own color pattern over that of either parental species. This is consistent with a genetic basis to wing pattern preference and implies, first, that assortative mating preferences would facilitate the initial establishment of a homozygous hybrid color pattern by increasing the likelihood that early generation hybrids mate among themselves. Second, once established such a lineage would inherit assortative mating preferences that would lead to partial reproductive isolation from parental lineages.  相似文献   

15.
It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies.  相似文献   

16.
The Lepidoptera have long been used as examples in the study of evolution, but some questions remain difficult to resolve due to a lack of molecular genetic data. However, as technology improves, genomic tools are becoming increasingly available to tackle unanswered evolutionary questions. Here we have used expressed sequence tags (ESTs) to develop genetic markers for two Müllerian mimic species, Heliconius melpomene and Heliconius erato. In total 1363 ESTs were generated, representing 330 gene objects in H. melpomene and 431 in H. erato. User-friendly bioinformatic tools were used to construct a nonredundant database of these putative genes (available at http://www.heliconius.org), and annotate them with blast similarity searches, InterPro matches and Gene Ontology terms. This database will be continually updated with EST sequences for the Papilionideae as they become publicly available, providing a tool for gene finding in the butterflies. Alignments of the Heliconius sequences with putative homologues derived from Bombyx mori or other public data sets were used to identify conserved PCR priming sites, and develop 55 markers that can be amplified from genomic DNA in both H. erato and H. melpomene. These markers will be used for comparative linkage mapping in Heliconius and will have applications in other phylogenetic and genomic studies in the Lepidoptera.  相似文献   

17.
SUMMARY Heliconius butterfly wing patterns show repeated convergence between species and have adaptive value in mimicry and mate choice, offering an opportunity to connect adaptive changes in phenotype with their underlying genotypes. Here we study forewing ommochrome pigmentation in Heliconius melpomene . We clone two new ommochrome pathway genes for the Lepidoptera, karmoisin and kynurenine formamidase ( kf  ), and analyze the expression patterns of all known ommochrome genes across pupal wing development. In combination with published work, this generates the first comparative gene expression data for the co-mimics Heliconius erato and H. melpomene . In both species cinnabar expression correlates with the forewing band, but the expression pattern of vermillion differs significantly between the mimics. This demonstrates that both shared and divergent expression patterns are associated with mimetic phenotypes between Heliconius species. Two genes not studied in H. erato, scarlet and possibly kf , also show enhanced expression in the forewing band of H. melpomene , implying co-ordinated upregulation of several members of this biosynthetic pathway during pattern formation.  相似文献   

18.
Ecological divergence can cause speciation if adaptive traits have pleiotropic effects on mate choice. In Heliconius butterflies, mimetic patterns play a role in mate detection between sister species, as well as signalling to predators. Here we show that male butterflies from four recently diverged parapatric populations of Heliconius melpomene are more likely to approach and court their own colour patterns as compared with those of other races. A few exceptions, where males were more attracted to patterns other than their own, suggest that some mimetic patterns are sub-optimal in mate choice. Genotype frequencies in hybrid zones between races of H. melpomene suggest that mating is random, so reinforcement is unlikely to have played a role in intra-specific divergence. In summary, co-evolved divergence of colour pattern and mate preference occurs rapidly and is likely the first step in Heliconius speciation.  相似文献   

19.
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.  相似文献   

20.
Mimicry: developmental genes that contribute to speciation   总被引:2,自引:0,他引:2  
Despite renewed interest in the role of natural selection as a catalyst for the origin of species, the developmental and genetic basis of speciation remains poorly understood. Here we describe the genetics of Müllerian mimicry in Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), sister species that recently diverged to mimic other Heliconius. This mimetic shift was a key step in their speciation, leading to pre- and postmating isolation. We identify 10 autosomal loci, half of which have major effects. At least eight appear to be homologous with genes known to control pattern differences within each species. Dominance has evolved under the influence of identifiable "modifier" loci rather than being a fixed characteristic of each locus. Epistasis is found at many levels: phenotypic interaction between specific pairs of genes, developmental canalization due to polygenic modifiers so that patterns are less sharply defined in hybrids, and overall fitness through ecological selection against nonmimetic hybrid genotypes. Most of the loci are clustered into two genomic regions or "supergenes," suggesting color pattern evolution is constrained by preexisting linked elements that may have arisen via tandem duplication rather than having been assembled by natural selection. Linkage, modifiers, and epistasis affect the strength of mimicry as a barrier to gene flow between these naturally hybridizing species and may permit introgression in genomic regions unlinked to those under disruptive selection. Müllerian mimics in Heliconius use different genetic architectures to achieve the same mimetic patterns, implying few developmental constraints. Therefore, although developmental and genomic constraints undoubtedly influence the evolutionary process, their effects are probably not strong in comparison with natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号