首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Flexibility plot of proteins   总被引:3,自引:0,他引:3  
The flexibility plot of a protein lies on the observation that amino acid residues with the highest turn potential, i.e. located in highly mobile regions of protein surface, also possess the smallest volumes as well as the lowest hydrophobicities. The plot is generated by shifting a five residue window along the protein sequence and calculating the value of the hydrophobicity-volume product for consecutive quintuplets of amino acid residues. The concomitant occurrence of small volumes and low hydrophobicities results in very deep minima. A threshold value has also been introduced in order to discriminate significant minima. To substantiate the interpretation that the selected minima actually indicate very flexible segments of a protein (loops, turns, etc.), we have compared plots obtained for model proteins (lysozyme, myoglobin, ribonuclease, trypsin, thermolysin and T4 lysozyme) with X-ray thermal factors profiles available for the same proteins. When compared to thermal profiles, the majority of flexible segments evidenced by our plots have been found to be in agreement with regions characterized by high thermal factors. Results have also been discussed in the light of local organization possessed by examined proteins.  相似文献   

2.
A suite of FORTRAN programs, PREF, is described for calculating preference functions from the data base of known protein structures and for comparing smoothed profiles of sequence-dependent preferences in proteins of unknown structure. Amino acid preferences for a secondary structure are considered as functions of a sequence environment. Sequence environment of amino acid residue in a protein is defined as an average over some physical, chemical, or statistical property of its primary structure neighbors. The frequency distribution of sequence environments in the data base of soluble protein structures is approximately normal for each amino acid type of known secondary conformation. An analytical expression for the dependence of preferences on sequence environment is obtained after each frequency distribution is replaced by corresponding Gaussian function. The preference for the α-helical conformation increases for each amino acid type with the increase of sequence environment of buried solvent-accessible surface areas. We show that a set of preference functions based on buried surface area is useful for predicting folding motifs in α-class proteins and in integral membrane proteins. The prediction accuracy for helical residues is 79% for 5 integral membrane proteins and 74% for 11 α-class soluble proteins. Most residues found in transmembrane segments of membrane proteins with known α-helical structure are predicted to be indeed in the helical conformation because of very high middle helix preferences. Both extramembrane and transmembrane helices in the photosynthetic reaction center M and L subunits are correctly predicted. We point out in the discussion that our method of conformational preference functions can identify what physical properties of the amino acids are important in the formation of particular secondary structure elements. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Goodarzi H  Torabi N  Najafabadi HS  Archetti M 《Gene》2008,407(1-2):30-41
In the work presented, the changes in codon and amino acid contents have been studied as a function of environmental conditions by comparing pairs of homologs in a group of extremophilic/non-extremophilic genomes. Our results obtained based on such analysis highlights a number of notable observations: (i) the overall preference of amino acid usages in the proteins of a given organism is significantly affected by major environmental factors. The changes in amino acid preferences (amino acid usage profiles) in an extremophile compared to its non-extremophile relative recurs in the organisms of similar extreme habitats. (ii) On the other hand, changes in codon usage preferences in these extremophilic/non-extremophilic pairs, lack such persistency not only in different genome-pairs but also in the individual genes of a specific pair. (iii) We have noted a correlation between cellular function and codon usage profiles of the genes in the studied pairs. (iv) Based on this correlation, we could obtain a decent prediction of cellular functions solely based on codon usage profile data. (v) Comparisons made between two sets of randomly generated genomes suggest that different patterns of codon usage changes in genes of different functional categories result in a partial resistance towards the changes in the concentration of a given amino acid. This buffering capacity might explain the observed differences in codon usage trends in genes of different functions. In the end, we suggest codon usage and amino acid profiles as powerful tools that can be utilized to improve function predictions and genome-environment mappings.  相似文献   

4.
The conformational profile of the eight stereoisomeric 2-amino-3-phenylnorbornane-2-carboxylic acids (2-amino-3-phenylbicyclo[2.2.1]heptane-2-carboxylic acids) has been assessed by computational methods. These molecules constitute a series of four enantiomeric pairs that can be considered as rigid analogues of either L- or D-phenylalanine. The conformational space of their N-acetyl methylamide derivatives has been explored within the molecular mechanics framework, using the parm94 set of parameters of the AMBER force field. Local minimum energy conformations have been further investigated at the ab initio level by means of the Hartree-Fock and second order Moller-Plesset perturbation energy calculations using a 6-31G(d) basis set. The results of the present work suggest that the bulky norbornane structure induces two kinds of conformational constraints on the residues. On one hand, those of a steric nature directly imposed by the bicycle on the peptide backbone and, on the other hand, those that limit the orientations attainable by the phenyl ring which, in turn, reduces further the flexibility of the peptide backbone. A comparative analysis of the conformational profile of the phenylnorbornane amino acids with that of the norbornane amino acids devoid of the beta-phenyl substituent suggests that the norbornane system hampers the residue to adopt extended conformations in favour of C7-like structures. However, the bicycle itself does not impart a clear preference for any of the two possible C7 minima. It is the aromatic side chain, which is forced to adopt an almost eclipsed orientation, that breaks this symmetry introducing a marked preference for a single region of the (phi, psi) conformational space in each of the phenylalanine norbornane analogues investigated.  相似文献   

5.
Conformational studies have been carried out on the X-cis-Pro tripeptide system (a system of three linked peptide units, in the trans-cis-trans configuration) using energy minimization techniques. For X, residues Gly, L-Ala, D-Ala and L-Pro have been used. The energy minima have been classified into different groups based upon the conformational similarity. There are 15, 20, 18 and 6 minima that are possible for the four cases respectively and these fall into 11 different groups. A study of these minima shows that, (i) some minima contain hydrogen bonds--either 4-->1 or 1-->2 type, (ii) the low energy minima qualify themselves as bend conformations, (iii) cis' and trans' conformations are possible for the prolyl residue as also the C gamma-endo and C gamma-exo puckerings, and (iv) for Pro-cis-Pro, cis' at the first prolyl residue is ruled out, due to the high energy. The available crystal structure data on proteins and peptides, containing cis-Pro segment have been examined with a view to find the minima that occur in solid state. The data from protein show that they fall under two groups. The conformation at X in X-cis-Pro is near extended when it is a non-glycyl residue. In both peptides and proteins there exists a preference for trans' conformation at prolyl residue over cis' when X is a non-glycyl residue. The minima obtained can be useful in modelling studies.  相似文献   

6.
7.
Distributions of each amino acid in the trans-membrane domain were calculated as a function of the membrane normal using all currently available alpha-helical membrane protein structures with resolutions better than 4 A. The results were compared with previous sequence- and structure-based analyses. Calculation of the average hydrophobicity along the membrane normal demonstrated that the protein surface in the membrane domain is in fact much more hydrophobic than the protein core. While hydrophobic residues dominate the membrane domain, the interfacial regions of membrane proteins were found to be abundant in the small residues glycine, alanine, and serine, consistent with previous studies on membrane protein packing. Charged residues displayed nonsymmetric distributions with a preference for the intracellular interface. This effect was more prominent for Arg and Lys resulting in a direct confirmation of the positive inside rule. Potentials of mean force along the membrane normal were derived for each amino acid by fitting Gaussian functions to the residue distributions. The individual potentials agree well with experimental and theoretical considerations. The resulting implicit membrane potential was tested on various membrane proteins as well as single trans-membrane alpha-helices. All membrane proteins were found to be at an energy minimum when correctly inserted into the membrane. For alpha-helices both interfacial (i.e. surface bound) and inserted configurations were found to correspond to energy minima. The results demonstrate that the use of trans-membrane amino acid distributions to derive an implicit membrane representation yields meaningful residue potentials.  相似文献   

8.
When identical milk samples are presented, only 30% of participants respond with a “no preference” rating. Stability of the “no preference” rating was studied under a variety of conditions, having consumer panelists rate both identical and different pairs of milk samples with varying fat content. The proportion of participants choosing the “no preference” option, when the samples in the pair were identical, was largely consistent despite manipulation of pretest conditions and changes in test questions and answer formats. However, when the milk preference test was preceded by a same/different test, and those responding “same” were assumed to have no preference, the percent of “no preference” was two to three times larger for identical test samples (60–69%). Thus by branching the question, the “false preference” choice for identical milks was lowered. Among those responding “different” to identical milks, the false‐alarm rate increased to 91%, suggesting that perception of (spurious or momentary) differences is driving at least part of the preference choice.  相似文献   

9.
A new approach to the analysis of regular structures in proteins that is based on the method of molecular mechanics is proposed. The method uses only the information about the amino acid sequence. The alpha-helical conformation was simulated using the ICM program of molecular mechanics. Energy profiles of the sequences in the alpha-helical conformation, spanning the entire polypeptide chain, were plotted for eight proteins from the Protein Data Bank. The regions of each profile that exhibit energy minima were found to correspond to the alpha-helical regions of the real spatial structure of the protein. Twenty-four out of 25 helices were distinctly pronounced, which indicates a rather high accuracy of the prediction. The energy profiles also help reveal the short regions that correspond to 3/10-helices and the turns that include local alpha-helical conformations. Unlike the known statistical methods of prediction, this method makes it possible to establish the physical principles of the formation of alpha-helical conformations. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 6; see also http://www.maik.ru.  相似文献   

10.
Paper 1 in this series1 outlined a method for identifying sets of backbone conformations of a polymer which are of a given helical type. This paper is concerned with fast methods for the calculation and mapping of contact-free structures in cases where the structure consists of two rigid molecular groups and where the position of each group varies by rotation about its own distinct axis. In particular, it is shown how such methods can be used to locate the neighbourhoods of crystal packing minima for a helical polymer chain, which could be generated by the method of Paper 1 and which is to be packed rigidly into a lattice. The method does not possess the flexibility of a full refinement procedure, but its advantages, apart from its conjectured speed, include an exactly known level of exhaustion of the examined variables and immunity to false packing minima and choice of initial starting position. Together, the methods may provide a means for checking the capability of refinement procedures to locate packing minima.  相似文献   

11.
Implicit solvent models approximate the effects of solvent through a potential of mean force and therefore make solvated simulations computationally efficient. Yet despite their computational efficiency, the inherent approximations made by implicit solvent models can sometimes lead to inaccurate results. To test the accuracy of a number of popular implicit solvent models, we determined whether implicit solvent simulations can reproduce the set of potential energy minima obtained from explicit solvent simulations. For these studies, we focus on a six-residue amino-acid sequence, referred to as the paired helical filament 6 (PHF6), which may play an important role in the formation of intracellular aggregates in patients with Alzheimer's disease. Several implicit solvent models form the basis of this work--two based on the generalized Born formalism, and one based on a Gaussian solvent-exclusion model. All three implicit solvent models generate minima that are in good agreement with minima obtained from simulations with explicit solvent. Moreover, free-energy profiles generated with each implicit solvent model agree with free-energy profiles obtained with explicit solvent. For the Gaussian solvent-exclusion model, we demonstrate that a straightforward ranking of the relative stability of each minimum suggests that the most stable structure is extended, a result in excellent agreement with the free-energy profiles. Overall, our data demonstrate that for some peptides like PHF6, implicit solvent can accurately reproduce the set of local energy minimum arising from quenched dynamics simulations with explicit solvent. More importantly, all solvent models predict that PHF6 forms extended beta-structures in solution, a finding consistent with the notion that PHF6 initiates neurofibrillary tangle formation in patients with Alzheimer's disease.  相似文献   

12.
It is generally assumed that butterflies, as is the case with many holometabolous insects, rely primarily on nutrients gathered by larval feeding for somatic maintenance and fecundity. These reserves can be supplemented by adult feeding and in some cases by nuptial gifts passed from the males to the females during mating. Recent findings indicate that female butterflies detect and prefer nectar with high levels of amino acids, thus calling new attention to this nutritive source. Polyandrous species can further supplement their larval stores with additional nuptial gifts. This study examined how mating frequency of the polyandrous butterfly Pieris napi affects the female's preference for nectar amino acids. Females of this species generally detect and prefer nectar mimics containing amino acids. However, nectar amino acid preference is significantly lower in mated females. Furthermore, nectar amino acid preference increases when females are not allowed to remate, whereas the preference of twice-mated females remains constant at a lower level. These results indicate a versatile response of females to nectar amino acids, depending on their nutritional status; they may even switch their source of amino acids between adult feeding and nuptial gifts.  相似文献   

13.
Amino acids interact with each other, especially with neighboring amino acids, to generate protein structures. We studied the pattern of association and repulsion of amino acids based on 24,748 protein-coding genes from human, 11,321 from mouse, and 15,028 from Escherichia coli, and documented the pattern of neighbor preference of amino acids. All amino acids have different preferences for neighbors. We have also analyzed 7,342 proteins with known secondary structure and estimated the propensity of the 20 amino acids occurring in three of the major secondary structures, i.e., helices, sheets, and turns. Much of the neighbor preference can be explained by the propensity of the amino acids in forming different secondary structures, but there are also a number of intriguing association and repulsion patterns. The similarity in neighbor preference among amino acids is significantly correlated with the number of amino acid substitutions in both mitochondrial and nuclear genes, with amino acids having similar sets of neighbors replacing each other more frequently than those having very different sets of neighbors. This similarity in neighbor preference is incorporated into a new index of amino acid dissimilarities that can predict nonsynonymous codon substitutions better than the two existing indices of amino acid dissimilarities, i.e., Grantham's and Miyata's distances.  相似文献   

14.
Pyo J  Hwang SI  Oh J  Lee SJ  Kang SC  Kim JS  Lim J 《Proteomics》2003,3(12):2420-2427
Bovine pregnancy-associated protein (bPAP) isolated from pregnant bovine urines by two-dimensional electrophoresis (2-DE) was characterized by N-terminal sequencing, internal sequencing, and mass spectrometric analyses using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and tandem mass spectrometry. Database search using the amino acid sequences and the peptide mass profiles showed that the protein is a novel bovine pregnancy-associated protein of which the N-terminus has a high similarity to collagen alpha. The protein has a molecular mass of 21 kDa and a pI of 6.1. The expression profiles of the protein from the urine of 30 pregnant and 20 nonpregnant cows characterized by 2-DE indicated that the expression of bPAP during pregnancy increased to over nmol from the pmol level basal expression of bPAP at the nonpregnant state with < 3% of false negatives and < 10% of false positives. Using the peptide sequence information, polyclonal antibodies against the bPAP protein were generated. The purified polyclonal antibodies against the peptide sequences of bPAP detected the 21 kDa protein on the blots of pregnant cow urine by Western blot analysis. In addition, analysis showed that the expression of bPAP in the urine is associated with pregnancy, but that the urine concentration of bPAP is not correlated with the duration of the pregnancy.  相似文献   

15.
The electrodiffusion equations were solved for the one-ion channel both by the analytical method due to Levitt and also by Brownian dynamic simulations. For both types of calculations equilibration of ion distribution between the bath and the ends of the channel was assumed. Potential profiles were found that give good fits to published data on Na+ permeation of gramicidin channels. The data were best fit by profiles that have no relative energy maximum at the mouth of the channel. This finding suggests that alignment of waters or channel charged groups inside the channel in response to an ion's approach may provide an energetically favorable situation for entry sufficient to overcome the energy required for removing bulk waters of hydration. An alternative possibility is that the barrier to ion entry is situated outside the region restricted to single-ion occupancy. Replacement of valine with more polar amino acids at the No. 1 location was found to correspond to a deepening of the potential minima near the channel mouths, an increase in height of the central barrier to ion translocation across the channel, and possibly a reduction in the mobility of the ion-water complex in the channel. The Levitt theory was extended to calculate passage times for ions to cross the channel and the blocking effects of ions that entered the channel but didn't cross. These quantities were also calculated by the Brownian dynamics method.  相似文献   

16.
Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force.  相似文献   

17.
The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.  相似文献   

18.
19.
Bridged bicyclic amino acids have high potential applicability as self-organized, conformationally constrained synthetic building blocks that do not require assistance from hydrogen bond formation. We systematically investigated the intrinsic conformational propensities of dipeptides of bridged bicyclic β-amino acids by means of accelerated molecular dynamics simulation and density functional theory (DFT) calculations in methanol, chloroform, and water. While the main-chain conformation, represented by φ and θ values, is fixed by the nature of the bicyclic ring structure, rotation of the C-terminal carbonyl group (ψ) is also restricted, converging to one or two minima. In endo-type dipeptides, in which the two N- and C-terminal amides are spatially close to each other, the C-terminal amide plane is placed horizontally. In exo-type dipeptides, in which the two amides are on opposite sides of the ring plane, the C-terminal carbonyl group can take two types of positions: either parallel/antiparallel with the N-terminal carbonyl or beneath the bicyclic ring, forcing the amide NHMe moiety to lie outside of the ring. We also examined the cis-trans preference of model bicyclic amides. Although the parent amides exhibit cis-trans equilibrium without any preference, addition of a methyl group on one of the bridgehead positions tips the equilibrium towards trans.  相似文献   

20.
Many interesting proteins possess defined sequence stretches containing negatively charged amino acids. At present, experimental methods (X-ray crystallography, NMR) have failed to provide structural data for many of these sequence domains. We have applied the dihedral probability grid-Monte Carlo (DPG-MC) conformational search algorithm to a series of N- and C-capped polyelectrolyte peptides, (Glu)20, (Asp)20, (PSer)20, and (PSer-Asp)10, that represent polyanionic regions in a number of important proteins, such as parathymosin, calsequestrin, the sodium channel protein, and the acidic biomineralization proteins. The atomic charges were estimated from charge equilibration and the valence and van der Waals parameters are from DREIDING. Solvation of the carboxylate and phosphate groups was treated using sodium counterions for each charged side chain (one Na+ for COO-; two Na for CO(PO3)-2) plus a distance-dependent (shielded) dielectric constant, epsilon = epsilon 0 R, to simulate solvent water. The structures of these polyelectrolyte polypeptides were obtained by the DPG-MC conformational search with epsilon 0 = 10, followed by calculation of solvation energies for the lowest energy conformers using the protein dipole-Langevin dipole method of Warshel. These calculations predict a correlation between amino acid sequence and global folded conformational minima: 1. Poly-L-Glu20, our structural benchmark, exhibited a preference for right-handed alpha-helix (47% helicity), which approximates experimental observations of 55-60% helicity in solution. 2. For Asp- and PSer-containing sequences, all conformers exhibited a low preference for right-handed alpha-helix formation (< or = 10%), but a significant percentage (approximately 20% or greater) of beta-strand and beta-turn dihedrals were found in all three sequence cases: (1) Aspn forms supercoil conformers, with a 2:1:1 ratio of beta-turn:beta-strand:alpha-helix dihedral angles; (2) PSer20 features a nearly 1:1 ratio of beta-turn:beta-sheet dihedral preferences, with very little preference for alpha-helical structure, and possesses short regions of strand and turn combinations that give rise to a collapsed bend or hairpin structure; (3) (PSer-Asp)10 features a 3:2:1 ratio of beta-sheet:beta-turn:alpha-helix and gives rise to a superturn or C-shaped structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号