首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can?promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is?dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.  相似文献   

3.
The discrimination and differentiation of germ cells from somatic cells is a fundamental issue during development. The early specification of mouse primordial germ cells (PGCs) is achieved by the induction of Blimp1, a key regulator of germ cells. Nanos3 is one of the genes activated in early PGCs and prevents apoptosis during their migration stage. Once PGCs enter the embryonic gonads, they differentiate according to the somatic sex of the organism. During this process, Nanos2 plays an important role as it promotes male germ cell pathway by suppressing the female fate. In this review, the process of germ cell development in the mouse is discussed with a particular focus on the functions of the key proteins, Blimp1, Nanos, and Dead end1.  相似文献   

4.
In mouse embryos, the expression of Blimp1 has recently revealed a population of allocated primordial germ cell precursors 24 hours earlier than previously thought. Those 'blimped' precursors have been shown to give rise, by mitotic division, to germ cells only and no other cell lineages. Here, we try to understand the events that lead to Blimp1 expression in the primordial germ cell precursors and speculate on what can be the role of Blimp1 during primordial germ cell specification and gastrulation in the mouse. Finally, we discuss the possible involvement of Blimp1 in the two know modes of germ line segregation (epigenesis and preformation).  相似文献   

5.
6.
7.
8.
9.
10.
11.
Cell lineage determination in the mouse   总被引:5,自引:0,他引:5  
During the peri-implantation development of the mouse embryo from the blastocyst through gastrulation, Pou5f1 (OCT-4) down-regulation is closely linked to the initial step of lineage allocation to extraembryonic and embryonic somatic tissues. Subsequently, differentiation of the lineage precursors is subject to inductive tissue interactions and intercellular signalling that regulate cell proliferation and the acquisition of lineage-specific morphological and molecular characteristics. A notable variation of this process of lineage specification is the persistence of Pou5f1 activity throughout the differentiation of the primordial germ cells, which may underpin their ability to produce pluripotent progeny either as stem cells (embryonic germ cells) in vitro or as gametes in vivo. Nevertheless, intercellular signalling still plays a critical role in the specification of the primordial germ cells. The findings that primordial germ cells can be induced from any epiblast cells and that they share common progenitors with other somatic cells provide compelling evidence for the absence of a pre-determined germ line in the mouse embryo.  相似文献   

12.
Recent studies demonstrate that the normal progression of the germ cell lineage during gonadogenesis involves a delicate balance of primordial germ cell survival and death factors generated by surrounding somatic cells. This balance operates in a different fashion in females and males. The fine tuning primordial germ cell specification in the wall of the yolk sac, migration through the hindgut and dorsal mesentery, and colonization in the urogenital ridges involves the temporal and spatial activation of the following signaling pathways: Primordial germ cell specification involves bone morphogenetic proteins 2, 4 and 8b, and their migration is facilitated by the c-kit receptor-ligand duet. When colonization occurs: (1) neuregulin-beta ligand is expressed and binds to an ErbB2-ErbB3 receptor tyrosine kinase heterodimer on primordial germ cells; (2) Vasa, an ortholog of the Drosophila gene vasa, member of an ATP-dependent RNA helicase of the DEAD (Asp-Glu-Ala-Asp)-box family protein is also expressed by primordial germ cells; (3) Bcl-x (cell survival factor) and Bax (cell death factor) join forces to modulate the first burst of primordial germ cell apoptosis; (4) Cadherins, integrins, and disintegrins bring together primordial germ cells and somatic cells to organize testis and ovary. Information on other inducers of primordial cell survival, such as TER (teratoma) factor, is beginning to emerge.  相似文献   

13.
14.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

15.

Background

Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.

Methodology and Principal Findings

Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.

Conclusions/Significance

We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.  相似文献   

16.
17.
PRMT5 is a type II protein arginine methyltransferase with roles in stem cell biology, reprograming, cancer and neurogenesis. During embryogenesis in the mouse, it was hypothesized that PRMT5 functions with the master germline determinant BLIMP1 to promote primordial germ cell (PGC) specification. Using a Blimp1Cre germline conditional knockout, we discovered that Prmt5 has no major role in murine germline specification, or the first global epigenetic reprograming event involving depletion of cytosine methylation from DNA and histone H3 lysine 9 dimethylation from chromatin. Instead, we discovered that PRMT5 functions at the conclusion of PGC reprograming I to promote proliferation, survival and expression of the gonadal germline program as marked by MVH. We show that PRMT5 regulates gene expression by promoting methylation of the Sm spliceosomal proteins and significantly altering the spliced repertoire of RNAs in mammalian embryonic cells and primordial cells.  相似文献   

18.
生殖细胞特化是发育和遗传的基础。原始生殖细胞(精子和卵子的前体细胞)的特化包括3个主要事件:体细胞程序的抑制、潜在全能性的获得、基因组范围内的表观遗传重编程。含PR域蛋白1(PR domain-containing1,PRDM1)和PRDM14是生殖细胞系产生的关键转录调节因子。PRDMl要抑制体细胞程序,而PRDM14主要调节潜在全能性的获得及表观遗传学重编程。此外,PRDM家族蛋白PRDM9在生殖细胞减数分裂中有重要作用。  相似文献   

19.
冷丽智  林戈  卢光琇 《生物磁学》2011,(18):3569-3572
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号