首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antibodies raised against purified glutelins and prolamines were employed as probes to study the cellular routes by which these proteins are deposited into protein bodies of rice (Oryza sativa L.) endosperm. Three morphologically distinct protein bodies, large spherical, small spherical, and irregularly-shaped, were observed, in agreement with existing reports. Immunocytochemical studies showed the presence of glutelins in the irregularly-shaped protein bodies while the prolamines were found in both the large and small spherical protein bodies. Both the large and small spherical protein bodies, distinguishable by electron density and gold-labeling patterns, appear to be formed by direct deposition of the newly formed proteins into the lumen of the rough endoplasmic reticulum (ER). In contrast, glutelin protein bodies are formed via the Golgi apparatus. Small electron-lucent vesicles are often found at one side of the Golgi. Electron-dense vesicles, whose contents are labeled by glutelin antibody-gold particles, are commonly observed at the distal side of the Golgi apparatus and fuse to form the irregularly shaped protein bodies in endosperm cells. These observations indicate that the transport of rice glutelins from their site of synthesis, the ER, to the site of deposition, the protein bodies, is mediated by the Golgi apparatus.Abbreviations BSA bovine serum albumin - Da dalton - DAF days after flowering - ER endoplasmic reticulum - GL irregularly shaped - L large spherical - S small spherical (protein bodies) - PBS phosphate-buffered saline - PTA phosphotungstic acid  相似文献   

2.
Previous studies have demonstrated that the mRNAs encoding the prolamine and glutelin storage proteins are localized to morphologically distinct membranes of the endoplasmic reticulum (ER) complex in developing rice (Oryza sativa L.) endosperm cells. To gain insight about this mRNA localization process, we investigated the association of prolamine polysomes on the ER that delimit the prolamine protein bodies (PBs). The bulk of the prolamine polysomes were resistant to extraction by 1% Triton X-100 either alone or together with puromycin, which suggests that these translation complexes are anchored to the PB surface through a second binding site in addition to the well-characterized ribosome-binding site of the ER-localized protein translocation complex. Suppression of translation initiation shows that these polysomes are bound through the mRNA, as shown by the simultaneous increase in the amounts of ribosome-free prolamine mRNAs and decrease in prolamine polysome content associated with the membrane-stripped PB fraction. The prolamine polysome-binding activity is likely to be associated with the cytoskeleton, based on the association of actin and tubulin with the prolamine polysomes and PBs after sucrose-density centrifugation.  相似文献   

3.
The levels of prolamines and glutelins, the storage proteinsof rice, were quantified during seed development by immunoblotanalysis. Although both storage proteins were first detectedin 10 day old seeds and their amounts steadily increased throughoutseed development, the relative proportions of glutelins andprolamines were not constant. The molar ratio of glutelins toprolamines was 1.7 in 10 day old seeds and this ratio steadilydecreased to 1.2 in 25 day old seeds due to the increased synthesisand accumulation of prolamines specifically during the latterstages of seed development. In vivo pulse chase labelling studiesconfirmed that the rate of prolamine synthesis as compared tothat evident for glutelin increased during the latter half ofseed development and that protein turnover was not the basisfor the differences in accumulation patterns of these storageproteins. These results indicate that the storage proteins exhibitdifferent temporal accumulation patterns during seed developmentand, moreover, demonstrate that prolamines comprise a much largerproportion of the total storage protein fraction than previouslyrecognized. (Received August 31, 1992; Accepted November 27, 1992)  相似文献   

4.
Muench DG  Chuong SD  Franceschi VR  Okita TW 《Planta》2000,211(2):227-238
 The mRNAs that encode the prolamine storage proteins in rice (Oryza sativa L.) endosperm cells are enriched on the surface of the prolamine protein bodies (PBs), a subcellular structure consisting of a prolamine intracisternal granule surrounded by rough endoplasmic reticulum membrane. Previous biochemical studies (D.G. Muench et al., 1998, Plant Physiol. 116: 559–569) have shown that prolamine mRNAs may be anchored to the PB surface via the cytoskeleton. To better understand the mechanism and role of mRNA localization in rice endosperm cells, we studied the subcellular development of prolamine PBs and their relationship with the cytoskeleton in rice endosperm cells. Confocal microscopy of endosperm cells showed that, unlike the glutelin PBs, the developing prolamine PBs are not randomly distributed within the cell, but instead are often enriched in the cortical region of the cell only a few micrometers beneath the plasma membrane. In addition, the peripheral prolamine PBs are closely associated with the cortical microtubule and actin filament networks. The cortical enrichment of rice prolamine protein bodies represents a unique example of endoplasmic reticulum subdomain localization in plant cells. The interaction of this endoplasmic reticulum subdomain with the cytoskeleton provides new insights on the possible mechanism and role of mRNA localization in plants. Received: 30 September 1999 / Accepted: 12 November 1999  相似文献   

5.
6.
Albumin storage proteins in the protein bodies of castor bean   总被引:7,自引:6,他引:1       下载免费PDF全文
Of the total protein in the protein bodies of castor bean (Ricinus communis L.), approximately 40% is represented by a group of closely related albumins localized in the matrix of the organelle. This group of albumins has a sedimentation value of 2S and is resolved into several proteins of molecular weight around 12,000 daltons by sodium dodecyl sulfate-acrylamide gel electrophoresis. It has a high content of glutamate/glutamine and undergoes rapid degradation during the early stage of germination. In view of the abundance and ubiquitous occurrence of albumins in various seeds, we suggest that albumins, in addition to globulins, glutelins, and prolamines, are important storage proteins in seeds.  相似文献   

7.
Protein bodies (PBs) are endoplasmic reticulum (ER) derived organelles originally found in seeds whose function is to accumulate seed storage proteins. It has been shown that PB formation is not limited to seeds and green fluorescent protein (GFP) fused to either elastin‐like polypeptide (ELP) or hydrophobin (HFBI) fusion tags induce the formation of PBs in leaves of N. benthamiana. In this study, we compared the ELP‐ and HFBI‐induced PBs and showed that ELP‐induced PBs are larger than HFBI‐induced PBs. The size of ELP‐ and HFBI‐induced PBs increased over time along with the accumulation levels of their fused protein. Our results show that PB formation is a concentration‐dependent mechanism in which proteins accumulating at levels higher than 0.2% of total soluble protein are capable of inducing PBs in vivo. Our results show that the presence of fusion tags is not necessary for the formation of PBs, but affects the distribution pattern and size of PBs. This was confirmed by PBs induced by fluorescent proteins as well as fungal xylanases. We noticed that in the process of PB formation, secretory and ER‐resident molecules are passively sequestered into the lumen of PBs. We propose to use this property of PBs as a tool to increase the accumulation levels of erythropoietin and human interleukin‐10 by co‐expression with PB‐inducing proteins.  相似文献   

8.
The RNAs for the storage proteins of rice ( Oryza sativa ), prolamines and glutelins, which are stored as inclusions in the lumen of the endoplasmic reticulum (ER) and storage vacuoles, respectively, are targeted by specific cis -localization elements to distinct subdomains of the cortical ER. Glutelin RNA has one or more cis -localization elements (zip codes) at the 3' end of the RNA, whereas prolamine has two cis -elements; one located in the 5' end of the coding sequence and a second residing in the 3'-untranslated region (UTR). We had earlier demonstrated that the RNAs for the maize zeins ('prolamine' class) are localized to the spherical protein body ER (PB-ER) in developing maize endosperm. As the PB-ER localization of the 10-kDa δ-zein RNA is maintained in developing rice seeds, we determined the number and proximate location of their cis -localization elements by expressing GFP fusions containing various zein RNA sequences in transgenic rice and analyzing their spatial distribution on the cortical ER by in situ RT-PCR and confocal microscopy. Four putative cis -localization elements were identified; three in the coding sequences and one in the 3'-UTR. Two of these zip codes are required for restricted localization to the PB-ER. Using RNA targeting determinants we show, by mis-targeting the storage protein RNAs from their normal destination on the cortical ER, that the coded proteins are redirected from their normal site of deposition. Targeting of RNA to distinct cortical ER subdomains may be the underlying basis for the variable use of the ER lumen or storage vacuole as the final storage deposition site of storage proteins among flowering plant species.  相似文献   

9.
Rice (Oryza sativa) seed storage proteins (SSPs) are synthesized and deposited in storage organelles in the endosperm during seed maturation as a nitrogen source for germinating seedlings. We have generated glutelin, globulin, and prolamin knockdown lines and have examined their effects on seed quality. A reduction of one or a few SSP(s) was compensated for by increases in other SSPs at both the mRNA and protein levels. Especially, reduction of glutelins or sulfur-rich 10-kD prolamin levels was preferentially compensated by sulfur-poor or other sulfur-rich prolamins, respectively, indicating that sulfur-containing amino acids are involved in regulating SSP composition. Furthermore, a reduction in the levels of 13-kD prolamin resulted in enhancement of the total lysine content by 56% when compared with the wild type. This observation can be mainly accounted for by the increase in lysine-rich proteins. Although reducing the level of glutelins slightly decreased protein storage vacuoles (PSVs), the simultaneous reduction of glutelin and globulin levels altered the inner structure of PSVs, implicating globulin in framing PSV formation. Knock down of 13-kD prolamins not only reduced the size of endoplasmic reticulum-derived protein bodies (PBs) but also altered the rugged peripheral structure. In contrast, PBs became slightly smaller or unchanged by severe suppression of 10- or 16-kD prolamins, respectively, indicating that individual prolamins have distinct functions in the formation of PBs. Extreme increases or decreases in sulfur-poor prolamins resulted in the production of small PBs, suggesting that the ratio of individual prolamins is crucial for proper aggregation and folding of prolamins.  相似文献   

10.
Effect of nutrient supply on mungbean protein fractions was studied with respect to four concentration levels (0.0, 25, 50 and 100 mM) each of sulphur, potassium and phosphorus. Whereas amount (mg/g seed meal) of globulins increased under the increasing concentrations of all the three minerals, albumins increased under sulphur and potassium and glutelins under sulphur and phosphorus only. Tryptophan contribution due to albumins and globulins was found to increase while that due to glutelins decreased under increasing supplies of sulphur and phosphorus. However, under higher supply levels of potassium, tryptophan contribution due to all the fractions was found to increase. Methionine contribution due to albumin and globulin fractions increased under sulphur and potassium and that due to glutelins decreased as the concentration levels of potassium and phosphorus increased.  相似文献   

11.
Accumulation of different protein fractions in chickpea seed harvested from plants grown under four concentration levels (0, 25, 50 and 100 mM) of sulphur, nitrogen, potassium and phosphorus has been studied. Whereas globulins showed an increase with the increasing concentration of all the four minerals, albumins increased under sulphur, nitrogen and potassium, and glutelins increased under potassium and phosphorus. An increase in nitrogen regime led to increased contribution of tryptophan in the seed protein due to albumins and globulins and methionine contribution due to albumins, globulins and glutelins. Under higher supplies of sulphur, relative contribution of tryptophan due to albumins and methionine contribution due to albumins and globulins had increased.  相似文献   

12.
We present a comprehensive evaluation of a new structure mining method called PB-ALIGN. It is based on the encoding of protein structure as 1D sequence of a combination of 16 short structural motifs or protein blocks (PBs). PBs are short motifs capable of representing most of the local structural features of a protein backbone. Using derived PB substitution matrix and simple dynamic programming algorithm, PB sequences are aligned the same way amino acid sequences to yield structure alignment. PBs are short motifs capable of representing most of the local structural features of a protein backbone. Alignment of these local features as sequence of symbols enables fast detection of structural similarities between two proteins. Ability of the method to characterize and align regions beyond regular secondary structures, for example, N and C caps of helix and loops connecting regular structures, puts it a step ahead of existing methods, which strongly rely on secondary structure elements. PB-ALIGN achieved efficiency of 85% in extracting true fold from a large database of 7259 SCOP domains and was successful in 82% cases to identify true super-family members. On comparison to 13 existing structure comparison/mining methods, PB-ALIGN emerged as the best on general ability test dataset and was at par with methods like YAKUSA and CE on nontrivial test dataset. Furthermore, the proposed method performed well when compared to flexible structure alignment method like FATCAT and outperforms in processing speed (less than 45 s per database scan). This work also establishes a reliable cut-off value for the demarcation of similar folds. It finally shows that global alignment scores of unrelated structures using PBs follow an extreme value distribution. PB-ALIGN is freely available on web server called Protein Block Expert (PBE) at http://bioinformatics.univ-reunion.fr/PBE/.  相似文献   

13.
The aim of the present work was to reveal the histological changes of protein bodies (PBs) in the developing wheat endosperm under nitrogen (N) treatment. For this purpose, the development and accumulation of PBs in the dorsal and ventral regions of wheat endosperm affected by N application at booting stage were investigated using light microscopy and Image-Pro Plus 6.0 software. The endosperm without N treatment contained many smaller PBs that were scattered in endosperm cells in an unordered pattern, whereas the endosperm with N treatment contained many larger PBs or aggregations that were concentrated in a certain region of endosperm cells. The amount and relative areas of PBs in wheat varieties cvs. Xumai 30 and Yangmai 13 were significantly increased by N application. However, the cultivars differed with the degree of response to N being cv. Xumai 30 > cv. Yangmai 13. These differences also varied with position in the endosperm in the order ventral > dorsal region. The initiation of PBs occurred 3 days earlier in N-treated endosperm than the control.  相似文献   

14.
The capacity of two maize opaque endosperm mutants (o1 and o2) and two floury (fl1 and fl2) to accumulate lysine in the seed in relation to their wild type counterparts Oh43+ was examined. The highest total lysine content was 3.78% in the o2 mutant and the lowest 1.87% in fl1, as compared with the wild type (1.49%). For soluble lysine, o2 exhibited over a 700% increase, whilst for fl3 a 28% decrease was encountered, as compared with the wild type. In order to understand the mechanisms causing these large variations in both total and soluble lysine content, a quantitative and qualitative study of the N constituents of the endosperm has been carried out and data obtained for the total protein, nonprotein N, soluble amino acids, albumins/globulins, zeins and glutelins present in the seed of the mutants. Following two-dimensional PAGE separation, a total of 35 different forms of zein polypeptides were detected and considerable differences were noted between the five different lines. In addition, two enzymes of the aspartate biosynthetic pathway, aspartate kinase and homoserine dehydrogenase were analyzed with respect to feedback inhibition by lysine and threonine. The activities of the enzymes lysine 2-oxoglutate reductase and saccharopine dehydrogenase, both involved in lysine degradation in the maize endosperm were also determined and shown to be reduced several fold with the introduction of the o2, fl1 and fl2 mutations in the Oh43+ inbred line, whereas wild-type activity levels were verified in the Oh43o1 mutant.  相似文献   

15.
Summary Haynaldia villosa is a wild grass belonging to the tribe Triticeae, which includes important crops such as wheat, barley, and rye. The alcohol-soluble proteins ofH. villosa have extensive immunological relatedness with wheat prolamines as visualized by Western blot analysis. Amorphous protein inclusions surrounded by a limiting membrane are commonly found in the vacuoles of endosperm and subaleurone layers ofH. villosa seeds. A layer of cells just beneath the aleurone layer is rich in ER. Unlike that in other cell types, the ER in these cells is highly dilated and contains materials at its swollen distal ends. These materials are structurally similar to substances found in the protein bodies. Protein A-gold immunocytochemical localization studies employing antibodies against wheat prolamine confirmed that the inclusions found in the lumen of the ER do not contain prolamines. This observation indicates that the ER does not act as the site of prolamine accumulation inH. villosa. Protein bodies found in the vacuoles and the vesicles associated with the Golgi complexes were specifically labeled. This suggests that Golgi complexes mediate the transport of prolamines into vacuoles ofH. villosa endosperm cells, in a fashion analogous to that of other vacuolar proteins of dicotyledonous plants.  相似文献   

16.
Studies focusing on the targeting of RNAs that encode rice storage proteins, prolamines and glutelins to specific sub-domains of the endoplasmic reticulum (ER), as well as mis-localization studies of other storage protein RNAs, indicate a close relationship between the ER site of RNA translation and the final site of protein deposition in the endomembrane system in developing rice endosperm. In addition to prolamine and glutelin, rice accumulates smaller amounts of α-globulins, which are deposited together with glutelin in the protein storage vacuole (PSV). In situ RT-PCR analysis revealed that α-globulin RNAs are not distributed to the cisternal ER as expected for a PSV-localized protein, but instead are targeted to the protein body-ER (PB-ER) by a regulated process requiring cis-sorting sequences. Sequence alignments with putative maize δ-zein cis-localization elements identified several candidate regulatory sequences that may be responsible for PB-ER targeting. Immunocytochemical analysis confirmed the presence of α-globulin on the periphery of the prolamine protein bodies and packaging in Golgi-associated dense vesicles, as well as deposition and storage within peripheral regions of the PSV. Mis-targeting of α-globulin RNAs to the cisternal ER dramatically alters the spatial arrangement of α-globulin and glutelin within the PSV, with the accompanying presence of numerous small α-globulin particles in the cytoplasm. These results indicate that α-globulin RNA targeting to the PB-ER sub-domain is essential for efficient transport of α-globulins to the PSV and its spatial arrangement in the PSV. Such RNA localization prevents potential deleterious protein-protein interactions, in addition to performing a role in protein targeting.  相似文献   

17.
Saline-soluble glycinins and insoluble glutelins are the major storage proteins in soybean (Glycine max) and rice (Oryza sativa), respectively. In spite of their differences in solubility properties, both proteins are members of the 11S globulin gene family based on their similarities in primary sequences and processing of the coded protein. Wild-type and methionine-modified glycinin coding sequences were expressed in transgenic rice plants under the control of the rice glutelin GluB-1 promoter. Glycinins were specifically synthesized in the endosperm tissue and co-localized with glutelins in type II protein bodies. They assembled into 7S and 11S species, similar to what was observed in developing soybean seeds. This pattern was quite different from that displayed by the rice glutelins in untransformed plants, in which processed subunits sedimenting at 2S were apparent. In glycinin-expressing transgenic plants, however, glutelins were observed sedimenting at 7S and 11S with lesser amounts in the 2S region. A portion of the glycinins was also found associated in the insoluble glutelin fraction. Renaturation experiments suggested that the hybrid glycinin-glutelin oligomers were formed through specific interactions. Overall, these results indicate that despite significant differences in the assembly of soybean glycinin and rice glutelin, both proteins can assemble with each other to form soluble hexameric oligomers or insoluble aggregates.  相似文献   

18.
目的:对药食两用功能的薏苡仁蛋白质四类组分和氨基酸含量进行分析。方法:采用旋光法、索氏提取法、烘干法、马弗炉法分别进行淀粉、粗脂肪、水分和灰分的测定;采用顺序抽提法依次进行清蛋白、球蛋白、醇溶蛋白和谷蛋白的提取,用Brandford和凯式定氮法进行蛋白质含量分析;采用氨基酸分析仪进行氨基酸含量测定。结果:薏苡仁总蛋白含量为14.17%,其中清蛋白、球蛋白、醇溶蛋白和谷蛋白含量分别为0.20、0.88、6.34和5.30 mg/100mg鲜重,分别占总蛋白质含量的1.43%、6.20%、44.74%和37.38%;薏苡仁粉经酸水解后共检测到15种氨基酸,除Trp外,人体必需氨基酸和半必需氨基酸均有检测到;各氨基酸含量也存在着差异,含量最高的为Glu(3.59 mg/100mg),含量最低的为Me(t0.17 mg/100mg)。结论:薏苡仁蛋白中醇溶蛋白和谷蛋白含量较丰富,为今后进一步开发薏苡仁功能食品提供了理论数据。  相似文献   

19.
Extracts of corn have been found to induce mitosis in human peripheral blood and mouse splenic lymphocytes. The present investigation was initiated to characterize the mitogenic components of corn. Various classes of proteins such as albumins, globulins, zeins, and glutelins were isolated from defatted corn meal. With the exception of corn zeins, all classes of corn proteins possessed mitogenic activity for murine spleen cells. Because of the extreme insolubility of corn glutelins the present investigation was carried out only with corn albumins and globulins. These two classes of proteins stimulated spleen lymphocytes from C3H/HeN, C3H/HeJ, and athymic nu/nu mice as well as nylon-wool fractionated mouse B lymphocytes. Both corn albumins and globulins consist of a complex mixture of proteins. By gel filtration on Sephadex G-100 a low-molecular-weight protein (MW 12,000), which possessed maximum mitogenic activity, has been isolated from corn albumins.  相似文献   

20.
Exported mRNAs are targeted for translation or can undergo degradation by several decay mechanisms. The 5′→3′ degradation machinery localizes to cytoplasmic P bodies (PBs). We followed the dynamic properties of PBs in vivo and investigated the mechanism by which PBs scan the cytoplasm. Using proteins of the decapping machinery, we asked whether PBs actively scan the cytoplasm or whether a diffusion-based mechanism is sufficient. Live-cell imaging showed that PBs were anchored mainly to microtubules. Quantitative single-particle tracking demonstrated that most PBs exhibited spatially confined motion dependent on microtubule motion, whereas stationary PB pairs were identified at the centrosome. Some PBs translocated in long-range movements on microtubules. PB mobility was compared with mitochondria, endoplasmic reticulum, peroxisomes, SMN bodies, and stress granules, and diffusion coefficients were calculated. Disruption of the microtubule network caused a significant reduction in PB mobility together with an induction of PB assembly. However, FRAP measurements showed that the dynamic flux of assembled PB components was not affected by such treatments. FRAP analysis showed that the decapping enzyme Dcp2 is a nondynamic PB core protein, whereas Dcp1 proteins continuously exchanged with the cytoplasm. This study reveals the mechanism of PB transport, and it demonstrates how PB assembly and disassembly integrate with the presence of an intact cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号