首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
To determine the main benefits of clonal expansion of Miscanthus sinensis patches (monoclones), we observed the annual pattern of the areal expansion of a number of M. sinensis patches and examined how the quantity of rhizomes in such patches is related to changes in their basal area. To forage for nutriments, a patch must continuously widen its habitat. Patches annually expanded centrifugally by sympodial branching of short rhizomes, which originated in tillering that occurred more than once a year. However, the basal area of the patches approached a ceiling as the patches aged. Both the number and the weight of rhizomes in the patches continued to increase as long as the basal area expanded. The mean weight of rhizomes in patches also initially increased quickly, but then reached a ceiling as the clones expanded. Similarly, the amount of reserve substance per shoot in the patches increased asymptotically along with the clonal expansion, depending on the rhizome mass allotted to each shoot. These results suggest that, in the clonal growth of M. sinensis patches, the accumulation of reserve matter in the rhizomes is more important than foraging in new areas.  相似文献   

2.
Festuca rubra , a clonal grass of mountain grasslands, possesses a considerable variability in traits related to spatial spreading (rhizome production, length and branching; tussock architecture). Since these traits highly influence the success of the species in a spatially heterogeneous system of grasslands, a combined field and growth chamber approach was adopted to determine the within-population variation in these parameters. Clones were sampled in a mountain grassland (The Krkono?e Mts., Czech Republic); the environment (mean neighbour density) of individual clones varied highly. Before the clones were collected, shoot demography and tussock architecture within these clones were recorded in the field for four seasons. Their clone identity was determined using DNA RAPD. Vegetatively propagated plants from these clones were cultivated in a common garden experiment to demonstrate variation in tussock growth and architecture. Their response to change in red/far red light ratio was determined in the growth chamber. Highly significant variation among clones was found in almost all parameters. In the common garden, the clones differed in tussock growth (mean tillering rate), architecture (mean shoot angle, mean tussock density) and proportion of flowering shoots. In the growth chamber, both the aboveground parameters and parameters of the rhizome system were strongly affected by red/far red ratio; among-clone variation was also almost always significant. The genotype × environment interaction was significant for tillering rate and rhizome architecture. The structure of the rhizome system (which is the major component of clonal spread in space) is a complex result of several components whose inter-clone variations differ: (i) genetically determined mean rhizome system size, (ii) overall plasticity in rhizome system size (with no significant genetic variation in plasticity), and (iii) genetically determined plasticity in rhizome architecture. Because of the variation in plasticity in rhizome architecture, some c lones seemed to possess the ability to exploit a favourable habitat patch by producing short branches when there; whereas the remaining clones appeared to possess only a simple escape mechanism from unfavourable patches. Environmental variation in the light levels in the studied grassland is fine grained; horizontal growth rates of F. rubra are sufficient to make genets experience different patches in their lifetime. The high variation in both genotype means and plasticities is likely to be due to selection early in genet life in an environment which is heterogeneous at a fine scale.  相似文献   

3.
Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China''s northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for the management of L. chinensis-dominant grasslands.  相似文献   

4.
Clonal propagation is important for the survival and maintenance of the common reed Phragmites australis. Pot culture experiments were conducted to investigate the effects of lead (Pb) concentration (0, 500, 1500, 3000, 4500 mg·kg?1) and water stress on the clonal reproductive ability of this species. The Pb concentration found in plant organs, in decreasing order, was roots >shoots >rhizomes. There was a negative relationship between the growth of clonal propagative modules (excluding axillary shoot buds) and Pb concentrations, which caused a decrease in biomass, rhizome growth and number of axillary and apical rhizome buds. Daughter axillary shoots exhibited a tolerance strategy, with no significant change in their number; the axillary and apical rhizome buds, daughter apical rhizome shoots and rhizomes exhibited compensatory growth during the late stage of Pb (excluding 4500 mg·kg?1) treatment in a wet environment. Pb applications above 500 mg·kg?1 reduced these parameters significantly in the drought treatment, except for the number of axillary shoot buds, which did not change. Our results indicate that clonal propagative resistance to Pb contamination can occur via tolerance strategies, compensatory growth and a Pb allocation strategy, enabling these reeds to maintain population stability in wet environments. However, clonal modular growth and reproductive ability were inhibited significantly by the interaction between drought and Pb, which would cause a decline in P. australis populations in a dry environment. Lead concentrations of 4500 and 500 mg·kg?1 in soils might meet or exceed the Pb tolerance threshold of clonally propagated reeds in wet and dry environments, respectively.  相似文献   

5.
Line Johansen 《Plant Ecology》2009,201(2):435-444
Plants with clonal growth can generate patches dominated by a single species. In time, patches can change and may fragment, form a ring, dissolve or both persist and expand. For patches to maintain their original habitat and simultaneously increase in size, ramets or clonal fragments must both promote local persistence inside the patch and grow out of the patch into new habitats. This study analyses simultaneously expanding and persistent Trifolium patches in a nutrient-poor lawn that is frequently cut, and where the Trifolium is competitively superior to the grass species. Trifolium primary stolon growth strategies were analyzed in relation to their location (border, middle, and center) inside the patch, and according to patch size (small, medium, and large). It was hypothesized that different growth strategies inside a patch can explain both persistent and expanding patch of Trifolium, and that growth strategies were different between patch sizes. Primary Trifolium stolons had two different growth strategies inside and at the border of patches: (i) stolons at the border were long, grew fast, had few lateral stolons, and grew out of the patch, while (ii) stolons inside the patch were smaller, grew slowly, and had more lateral stolons and a wide range of growth directions. Growth strategies were not different between patch sizes. The directional growth and the high growth rate at the border will increase the patch size with time, while the growth strategy near the center consolidates the patch in space and time, by placing ramets inside the patch. Different growth strategies near the center and on the border result in Trifolium patches that are simultaneously persistent and on the increase. The results also indicate a division of labor among primary Trifolium stolons in a patch.  相似文献   

6.
The aim of this study was to investigate whether resource availability affects the degree of physiological integration and the growth pattern of interconnected ramets in the clonal plantMaianthemum bifolium (L.)F.W. Schmidt (Liliaceae), a rhizomatous herb of European forests, by studying it at two contrasting South Swedish beech forest sites termed “poor” and “rich”. The degree of physiological integration was studied by tracing the pattern of14C translocation and in a cutting experiment involving rhizome severing and defoliation treatments. The size of the plants, growth of new rhizomes, branching frequency, distance between shoots and the internode length were compared. The plants were larger, rhizomes had greater specific mass (mg mm?1), internodes were shorter and branching frequency higher at the rich site. The cutting treatments reduced the growth of new rhizomes at both sites, and new rhizome segments had lower specific mass in treated plants than in controls, showing the importance of physiological integration for new growth. Translocation of14C in May showed that the young rhizome tip was a strong sink for carbon. Basipetal translocation to older portions of the rhizome system was greater at the rich site than at the poor site. In September, four months after labelling, the rhizome tips were still strongly labelled with14C and basipetal translocation had increased at both sites. Plants at the rich site appeared to translocate larger amounts of14C basipetally than plants at the poor site. It is concluded thatM. bifolium shows a plastic response to resource availability by varying rhizome growth and branching frequency, but the degree of physiological integration is probably only indirectly affected through an increased number of sinks (new rhizome branches) along the ramet system at the rich site.  相似文献   

7.
Marbà N  Hemminga MA  Duarte CM 《Oecologia》2006,150(3):362-372
The allometric scaling of resource demand and translocation within seagrass clones to plant size (i.e. shoot mass and rhizome diameter), shoot production and leaf turnover was examined in situ in eight seagrass species (Cymodocea nodosa, Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Posidonia oceanica, Thalassodendron ciliatum, Thalassia hemprichii and Zostera noltii), encompassing most of the size range present in seagrass flora. One fully developed shoot on each experimental rhizome was incubated for 2–3 h with a pulse of NaH13CO3 (235 μmol) and 15NH4Cl (40 μmol). The mobilisation of incorporated tracers across the clone was examined 4 days later. Carbon and nitrogen demand for shoot production across seagrass species scaled at half of the shoot mass, whereas seagrass leaves incorporated tracers (13C and 15N) at rates proportional to the shoot mass. The shoots of all seagrass species shared resources with neighbours, particularly with younger ones. The time scales of physiological integration and the absolute amount of resources shared by seagrass ramets scaled at 2.5 power of the rhizome diameter. Hence, the ramets of larger species were physiologically connected for longer time scales and share larger absolute amounts of resources with neighbours than those of smaller species. The different pattern of resource translocation exhibited by seagrasses helps explain the ecological role displayed by these species and the success of large seagrasses colonising nutrient-poor coastal areas, where they often dominate.  相似文献   

8.
In the present study, we compared the clonal architecture between two seagrass species, the dioecious Cymodocea nodosa and the hermaphroditic, self-compatible Zostera noltii, in order to verify the hypothesis that clonal growth strategies and resulting genet architecture are associated with mating system in clonal plants. It is expected that self-incompatible species should be associated to a guerrilla growth form, because of pollen limitation due to obligate outbreeding, while the ecologically advantageous phalanx strategy can be adopted in self-compatible species. Genotypic diversity and heterozygosity were also assessed in the two species. Sampling has been conducted in mixed stands, collecting shoots of the two species at the same points of the sampling grid, in order to even out any effects of environmental heterogeneity. Species-specific microsatellite loci have been used as molecular markers to identify clones and assess their spatial distribution in both species. As expected, we found an intermingled configuration of genets in the dioecious C. nodosa while Z. noltii was characterized by a clumped, `phalanx-type' distribution of clones. C. nodosa was characterized by higher genotypic diversity with regard to Z. noltii, while heterozygosity levels were comparable in the two species. Coordinating Editor: Dr J. Tuomi  相似文献   

9.
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica.  相似文献   

10.
1. The relative effect of migration and local growth on the spatio‐temporal density‐distribution of two co‐existing herbivorous weevils, Cionus scrophulariae L. and C. tuberculosus Scop., in 32 host plant Scrophularia nodosa L. patches of varying sizes was investigated. 2. Predictions of the temporal development of the slope in the density‐patch size relationships were derived from a basic population model with scale‐dependent migration rates. The model indicated that the slopes in the density‐patch size relationships during the early season should be reflected by the net scaling of immigration and emigration rates, whereas the slopes during the later season should increase as a result of local growth. 3. Emigration rates of the weevils were estimated in a field experiment, were the weevils coexisted in space and time. These results were then combined with a previous estimate of immigration rates in order to determine the net scaling of migration rates. 4. The emigration rate differed between species, caused by different movement rates in small patches, which could explain differences in the general slope of the density‐patch size relationships of the weevils in the natural figwort patches throughout the summer. The slopes in the relationships in the early season were largely predicted by the net scaling of migration rates. The slope also increased in the later season for C. tuberculosus, whereas the slope decreased for C. scrophulariae. 5. It was concluded that the understanding of both inter‐ and intra‐specific variations in density‐patch size relationships of insect herbivores can be improved using population models incorporating scale‐dependent migration and local growth.  相似文献   

11.
Abstract. The dynamics of Vaccinium myrtillus (bilberry) patches were studied in spruce (Picea abies) forest at the higher montane and lower subalpine level in the Tarentaise valley (Savoy, France). Although aerial parts of the shrub may give some indication of age and density of the patches, the annual growth and death of rhizomes are better indicators of patch dynamics. In some cases, dead and young rhizomes may occur simultaneously in the same patch, indicating that growth and death proceed continuously on the inside of dense patches. At mountain sites, slope position of plants significantly influences rhizome growth. A theoretical model of growth of bilberry patches is proposed which takes into account the anisotropic influenceof slope and the postulated independence of different rhizome units belonging to the same individual.  相似文献   

12.
In vitro plant regeneration of Agave fourcroydes Lem. (Agavaceae) is described. Results suggest that the NO3 -:NH4 + balance in the culture medium is a key factor controlling callus growth and organogenesis in rhizome cultures. Stem callus showed limited organogenic capacity, but high cytokinin concentrations induced adventitious shoot formation on stem explants. When these shoots were excised and subcultured, new callus formed at their base from which new shoots arose. The shoots from stem explants and rhizome callus formed extensive root systems in vitro and were transferred to pot culture with a 90% survival rate.  相似文献   

13.
Patch dynamics of the stream macrophyte, Callitriche cophocarpa   总被引:3,自引:0,他引:3  
1. We examined changes in position and growth of Callitriche cophocarpa patches in a shallow section of a small Danish stream during the main expansion of plant cover between April and June. Mean upstream growth of patches was only 7.5% of downstream growth. The mean growth rate was 1,02cm day?1 in length and 0.55 cm day?1 in width and the growth rates were not significantly dependent on patch size. For patches with an area (A) above 100cm2, the growth rates in patch area (dA/dt) was proportional to patch circumference and thus √Aand the relative growth rate (dA/dt A?1) was inversely proportional to √A.The smallest patches (<100cm2), however, expanded less than expected because of their combined tendency to grow more slowly in patch length and width than larger patches. 2. The expansion of plant cover will be much more rapid in many medium-sized patches compared to few large patches of a similar combined area, because internal selflimitation by light and space is partially relieved in smaller patches. We anticipate that recruitment and mortality of new-formed patches are critical steps preceding areal expansion. Quantification of these processes are needed fully to evaluate patch dynamics and space occupation.  相似文献   

14.
We investigated the importance of clonal growth to the recovery of a common eastern North American sub-shrub, Gaultheria procumbens L. (Ericacea), after clearcut logging. Changes in vegetative growth and development of G. procumbens clones and clonal populations were examined in a chronosequence of logged stands representing different stages of successional development after clearcutting (open habitat, young regenerating forest, closed regenerating forest) and in neighboring undisturbed late-successional forests representative of presettlement conditions. We specifically quantified seedling presence and above-ground ramet production, demographic condition (e.g., sexual vs. vegetative stems), belowground rhizome growth and spread, and assessed the degree of intraspecific variation in clonal morphology and biomass allocation in stands differing in their disturbance history and degree of successional development. Recovery in G. procumbens was largely driven by the “release growth” of pre-existing clonal bud-banks in response to canopy removal. Release growth was expressed as greater ramet initiation, rhizome branching and clonal spread. Conversely, we found no evidence of sexual establishment in the species, although production of reproductive biomass (e.g., inflorescence mass, number of flowering shoots) was significant. These findings support a deterministic model of vascular resistance and resilience to catastrophic disturbance, in which recovery of forest plant communities derives from the life-history characteristics of constituent species.  相似文献   

15.
Summary

Twinflower, Linnaea borealis L., is a creeping, woody, clonal perennial nationally scarce in the UK, with its distribution confined to discrete patches in Scotland. Translocation of twinflower from natural patches into either existing patches, with a view to increasing genetic variation and outcrossing rates, or to unoccupied habitat, with a view to increasing its overall prevalence, could effectively increase the species' viability. In a small pilot experiment 38 shoots were moved from a vigorous patch in the Scottish Borders into two overtly hospitable clearings within the same woodland. Two years later 18 shoots (47%) survived and three years later four shoots (10.5%) remained, with die-back occurring irregularly over shoots of different initial lengths. No measured character of the original shoots explained which survived at each time interval. The most likely cause of the high mortality was competition from established grasses (Deschampsia flexuosa) which prevented growth and the formation of new roots along stolons. The study should help focus future efforts to determine best methods of increasing establishment of twinflower in Scotland.  相似文献   

16.
Resource partitioning between shoot growth, storage and reproduction is poorly understood in many clonal plant species. This study documents seasonal patterns of growth, 14C-labelled photoassimilate distribution and remobilization in the invasive rhizomatous species Fallopia japonica (Japanese knotweed). Biomass accumulation above- and below-ground in F. japonica was rapid. By September, rhizome biomass had increased 18-fold from the initial harvest in May (representing 48% of total plant biomass) and this was maintained over winter. Patterns of 14C allocation from F. japonica shoots labelled at different times of year show that as the season progressed, the rhizomes became an increasingly important sink for current assimilate (the percentage of 14C recovered from rhizomes was 35% in August and 67% in September) and the corresponding retention of assimilate by established shoots declined. The percentage of 14C exported to roots was greatest in August. Relatively little photoassimilate was exported to other shoots on the plant, or to flowers. Recycling of photoassimilate was fairly tight in this species and 14C fixed by shoots in early May 1999 or September 1999 was remobilized to the rhizome prior to shoot senescence and death. Some of this 14C was then remobilized to new shoots early the following spring. These characteristics may contribute to the success of F. japonica in colonizing a variety of contrasting habitats, often with serious management implications.  相似文献   

17.
Jensen  Susan  Bell  Susan 《Plant Ecology》2001,155(2):201-217
By examining the spatial distribution of rhizome morphological characteristics of the seagrass Halodule wrightii, in relation to a seasonal pattern of seagrass patch dynamics, we attempted to derive a mechanistic explanation for the variety of changes exhibited by seagrass patch shapes. Rhizome morphological characteristics (mean internodal distance, branching frequency and biomass) were measured at three spatially-recognized regions (Flood edge, Center, Ebb edge) of 5 seagrass patches, reflecting position relative to hydrodynamic flow. In addition, maps (1 resolution) of the seagrass patches were used to quantify changes in seagrass patch margins across the growing season. Rhizome morphological characteristics varied with spatial position: longer internodal distances were recorded on both edges of the patch relative to patch center, and rhizomes from Flood edges exhibited longer internodes than plants on the Ebb edge of patches. Branching frequency showed no spatially-explicit distribution across the seagrass patches. Patch change analysis indicated a pattern of increase in patch area on the Flood edges of seagrass patches and recession (or no change) on the Ebb edges. Patch margin change was significantly correlated with internodal distances: the more positive the increase in patch seagrass coverage on an edge, the greater the internodal distances.Sediment nutrients were explored as a potential mechanism for the distinct spatial distribution of morphologies found; experimental addition of phosphorus, but not nitrogen, significantly altered the rhizome morphology and biomass, but measurement of ambient sediment nutrient concentrations produced no significant correlations with the in situ distribution of rhizome morphologies. These results suggest that larger-scale landscape characteristics of patch dynamics may be determined by predictable behaviors of small-scale components, but the results do not conclusively describe a mechanism for this system.  相似文献   

18.
The shoot configuration of each monoclonal patch of phalanx-forming tallgrass, Miscanthus sinensis, is characterized by the formation of a fairy ring, which forms as the result of developing vacant inner areas. One large-sized M.sinensis patch (patch L), observed over a 9-year survey period, underwent lateral expansion in almost all directions as a result of peripheral shoot births. In the year after the shoots in each part of patch L reached a maximum density (Dmax), the number of shoots decreased by approximately 20% per year. However, the overall number of within-patch shoots was stable during the survey because the patch area increased at the periphery. Twelve patches (>900cm2 in area) with orthotropic shoots were selected to observe the distribution pattern of within-patch shoots, and the patch areas were divided into three parts: the exterior, intermediate and interior areas. In 10 of these 12 patches, shoot densities were lowest in the interior areas and highest in the exterior areas, which led to ring formation. The shoot density of each subarea was inversely related to the age of the subarea. This raises the possibility that in any part of these patches, shoot densities decrease annually from Dmax in a similar way.  相似文献   

19.
Cirsium rivulare is a perennial plant that forms patches consisting of ramets resulting from sexual reproduction by seeds and asexual propagation by rhizome fragmentation. We examined the relationship between the size of patches and genetic differentiation of ramets within and between patches. Ramet genotypes were identified using microsatellites. From among 216 ramets examined in the studied population, 123 had a unique genotype, while 93 were clonal, i.e., their genotype was present in at least two ramets. The frequency of ramets with clonal genotypes was 43% and the frequency of unique genotypes was 57%. Ramets with identical genotypes were dominant in small patches. Large patches consisted of ramets with both unique and clonal genotypes, usually with the predominance of the latter. A molecular variance analysis showed the highest level of variance between ramets and the lowest between patches. Additionally, 21.02% of the total variance was recorded between ramets and within patches. The size of patches was correlated with the number of clonal ramets and the number of unique ramets, but it was not correlated with the clonality index. This population of C. rivulare is currently in a phase of decline from 30 years of vegetation transformation, and there appears to have been an increase in sexual propagation based growth over clonal propagation based growth. Hence, a predominance of ramets with unique genotypes was observed. This can happen as a result of disintegration of large patches and formation of gaps between them. These gaps become convenient places for seed germination and the subsequent development of seedlings.  相似文献   

20.
Clonal plant species have been shown to adopt different strategies to persist in heterogeneous environments by changing relative investments in sexual reproduction and clonal propagation. As a result, clonal diversity and genetic variation may be different along environmental gradients. We examined the regional and local population structure of the clonal rhizomatous forest herb Paris quadrifolia in a complex of forest fragments in Voeren (Belgium). Relationships between population size (the number of shoots), shoot density (the number of shoots per m2) and local growth conditions were investigated for 47 populations. Clonal diversity and genetic variation within and among 19 populations were investigated using amplified fragment length polymorphism markers. To assess the importance of sexual reproduction, seed set, seed weight and germination success were determined in 18 populations. As predicted, local growth conditions largely affected population distribution, size and density of P. quadrifolia. Populations occurring in moist and relatively productive sites contained significantly more shoots. Here, shoots were also much more sparsely distributed compared to populations occurring in dry and relatively unproductive sites, where shoots showed a strongly aggregated distribution pattern. Clonal diversity was relatively high, compared with other clonal species (G/N ratio = 0.43 and Simpson’s D=0.81). Clonal diversity significantly (P<0.01) decreased with increasing shoot density while molecular genetic variation was significantly (P<0.01) affected by population size and local environmental conditions. Lack of recruitment and out-competition of less-adapted genotypes may explain the decreased genetic variation in dry sites. Analysis of molecular variance revealed significant genetic variation among populations (Φ ST=0.42, P<0.001), whereas pairwise genetic distances were not correlated to geographic distances, suggesting that gene flow among populations is limited. Finally, the number of generative shoots, the number of seeds per fruit and seed weight were significantly and positively related to population size and local growth conditions. We conclude that under stressful conditions populations of clonal forest plant species can slowly evolve into remnant populations characterized by low levels of genetic variation and limited sexual reproduction. Conservation of suitable habitat conditions is therefore a prerequisite for effective long-term conservation of clonal forest plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号