首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
The kinetics of azide binding to chloroperoxidase have been studied at eight pH values ranging from 3.0 to 6.6 at 9.5 +/- 0.2 degrees C and ionic strength of 0.4 M in H2O. The same reaction was studied in D2O at pD 4.36. In addition, results were obtained on azide binding to horseradish peroxidase at pD 4.36 and pH 4.56. Typical relaxation times were in the range 10-40 microseconds. The value of kH/kD(on) for chloroperoxidase is 1.16, and kH/kD(off) is 1.7; corresponding values for horseradish peroxidase are 1.10 and 2.4. The H/D solvent isotope effects indicate proton transfer is partially rate controlling and is more important in the dissociation of azide from the enzyme-ligand complex. A mechanism is proposed in which hydrazoic acid binds to chloroperoxidase in a concerted process in which its proton is transferred to a distal basic group. Hydrogen bonding from the newly formed distal acid to the bound azide facilitates formation of hydrazoic acid as the leaving group in the dissociation process. The binding rate constant data, kon, can be fit to the equation kon = k3/(1 + KA/[H+]), where k3 = 7.6 X 10(7) M-1 S-1 and KA, the dissociation constant of hydrazoic acid, is 2.5 X 10(-5) M. The same mechanism probably is valid for the ligand binding to horseradish peroxidase.  相似文献   

2.
D R Meloon  R G Wilkins 《Biochemistry》1976,15(6):1284-1290
The kinetics of anation of methemerythrin over a wide range of pH and concentration of anions have been studied at 25 degrees C. The azide and thiocyanate ions have been most intensively investigated but experiments with fluoride and chloride are also reported. The replacement of anion in methemerythrin-anionic adducts by other anions has also been studied. Except for replacement of met-fluoride by azide, all replacements can be explained by a dissociative mechanism via the aquated species. Anations are second-order and an associative mechanism is preferred. The second-order rate constant decreases with increasing anion concentrations (from 20 muM to 20 mM). This is attributed to the effect of a secondary anion binding site. The behavior of octameric and monomeric forms of the protein toward thiocyanate is identical. A comparison of results with simple Fe(III) complexes and certain metalloproteins is made.  相似文献   

3.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

4.
A basic heme peroxidase has been isolated from cucumber (Cucumis sativus) peelings and characterized through electronic and (1)H NMR spectra from pH 3 to 11. The protein, as isolated, contains a high-spin ferriheme which in the low pH region is sensitive to two acid-base equilibria with apparent pK(a) values of approximately 5 and 3.6, assigned to the distal histidine and to a heme propionate, respectively. At high pH, a new low-spin species develops with an apparent pK(a) of 11, likely due to the binding of an hydroxide ion to the sixth (axial) coordination position of the Fe(III). A number of acid-base equilibria involving heme propionates and residues in the distal cavity also affect the binding of inorganic anions such as cyanide, azide, and fluoride to the ferriheme, as well as the catalytic activity. The reduction potentials of the native protein and of its cyanide derivative, determined through UV-Vis spectroelectrochemistry, result to be -0.320+/-0.015 and -0.412+/-0.010V, respectively. Overall, the reactivity of this protein parallels those of other plant peroxidases, especially horseradish peroxidase. However, some differences exist in the acid-base equilibria affecting its reactivity and in the reduction potential, likely as a result of small structural differences in the heme distal and proximal cavities.  相似文献   

5.
Rhus vernicifera (Rv) laccase was purified to electrophoretic homogeneity by hydrophobic interaction chromatography. A comprehensive study of the direct electrochemistry of Rv laccase covalently immobilized at a gold electrode using alkanethiol monolayers was undertaken. The observed midpoint potential was 410 mV versus the normal hydrogen electrode (NHE), consistent with reduction potentials obtained by potentiometric titration for the T1 copper site. Evidence is presented for a concerted 4-electron reversible process at slow scan rates (v) on the basis of peak current ratios (i(pa)/i(pc)). Catalytic currents were observed in the presence of the biological substrate oxygen, indicating that laccase activity is retained throughout the immobilization process. Electrochemical characteristics of the immobilized laccase were essentially invariant across the pH range 5.5-8.5 and the temperature range 5-35 degrees C. The purified enzyme displayed a pH optimum of 9.0, when assayed spectrophotometrically with syringaldazine as a substrate. Inhibition of the laccase activity with azide or fluoride showed an I(50)(NaN(3)) of 2.5 mM and an I(50)(NaF) of 18.5 mM. Electrochemistry in the presence of azide reduces the anodic current by ca. one-half, consistent with the 4-electron process decreasing to a 2-electron process. However, fluoride has no effect on anaerobic electrochemistry. These electrochemical results suggest that the pH dependence of laccase activity is related to the effects of pH on the structure or binding of the substrate.  相似文献   

6.
Differences between the reactivity of amorphous and crystalline myoglobin have been studied by the rapid-flow method combined with dual-wavelength spectrophotometry. The binding of ammonia to the hydroxide compound has a half-time of 55 ms. The reverse reaction has a half-time of 70 ms. At pH 7.0 the relative half-times of combination and dissociation with fluoride are 10 min for crystalline and 1.8 min for amorphous materials. Reactivity of the crystals to fluoride at pH 6.0 greatly increased as compared with pH 8.7. Half-time at pH 8.7 is 10 min, while at pH 6.0 the half-time is 2.5 s for the crystalline material and 1.4 s for the amorphous material. The exchange of fluoride by azide at pH 6.0 is 3.1-fold faster in amorphous material than in crystalline material.  相似文献   

7.
The azide complex of horseradish peroxidase was studied by high resolution 1H and 15N NMR spectroscopy and by the temperature-jump method. The heme peripheral methyl proton peaks and the ligand 15N resonance were resolved to show that binding of azide by horseradish peroxidase occurs only in acidic solution below pH 6.5. It was also found that the chemical exchange rate of azide with the ferric enzyme was much faster on the 1H and 15N NMR time scale. This was further substantiated by kinetics of azide binding by horseradish peroxidase where the chemical exchange rate was confirmed to be in the microseconds range at pH 5.0 and 23 degrees C. This rate is salient in usual ligand exchange reactions in hemoproteins so far reported. pH dependences of the first order association and dissociation rate constants were also studied by the temperature-jump method to suggest a strong linkage of the azide binding with a proton uptake of an amino acid residue on the enzyme. These results were compared with the case of horse metmyoglobin and were interpreted to indicate that a heme-linked ionizable group on the enzyme facilitates the fast entry of the ligand to the coordination site. A histidyl residue is a possible candidate for the ionizable group of the enzyme.  相似文献   

8.
The pH dependence of the apparent affinity constants of perchlorate for cobalt(II)bovine carbonic anhydrase II has been measured by electronic absorption spectroscopy. The obtained data have been analyzed in terms of the ionization of two acidic groups of CoBCAII, and the affinity of perchlorate for the two water-containing species of the enzyme have been estimated. Furthermore, the affinity constants of nitrate, perchlorate, and azide for CoBCAII in the temperature range 5 degrees C-30 degrees C have been determined by spectrophotometric titrations at pH 7. The affinity constants for these ligands decrease with increasing temperatures. The temperature dependence of binding was used to estimate the enthalpy and entropy parameters for the formation of the corresponding 1:1 adducts. The obtained results indicate that binding of these anions to the cobalt enzyme is an enthalpy driven process which is opposed by a moderate entropy change.  相似文献   

9.
It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.  相似文献   

10.
Cyanide binding to a cytochrome c peroxidase (CcP) variant in which the distal histidine has been replaced by a leucine residue, CcP(H52L), has been investigated as a function of pH using spectroscopic, equilibrium, and kinetic methods. Between pH 4 and 8, the apparent equilibrium dissociation constant for the CcP(H52L)/cyanide complex varies by a factor of 60, from 135 microM at pH 4.7 to 2.2 microM at pH 8.0. The binding kinetics are biphasic, involving bimolecular association of the two reactants, followed by an isomerization of the enzyme/cyanide complex. The association rate constant could be determined up to pH 8.9 using pH-jump techniques. The association rate constant increases by almost 4 orders of magnitude over the pH range investigated, from 1.8 x 10(2) M(-1) s(-1) at pH 4 to 9.2 x 10(5) M(-1) s(-1) at pH 8.6. In contrast to wild-type CcP, where the binding of HCN is the dominant binding pathway, CcP(H52L) preferentially binds the cyanide anion. Above pH 8, cyanide binding to CcP(H52L) is faster than cyanide binding to wild-type CcP. Cyanide dissociates 4 times slower from the mutant protein although the pH dependence of the dissociation rate constant is essentially identical for CcP(H52L) and CcP. Isomerization of the CcP(H52L)/cyanide complex is observed between pH 4 and 8 and stabilizes the complex. The isomerization rate constant has a similar magnitude and pH dependence as the cyanide dissociation rate constant, and the two reactions are coupled at low cyanide concentrations. This isomerization has no counterpart in the wild-type CcP/cyanide complex.  相似文献   

11.
The mechanism of uptake of cobalt ions by Neurospora crassa   总被引:2,自引:2,他引:0       下载免费PDF全文
Uptake of Co(2+) by 3-day-old mycelia of Neurospora crassa involves cell-surface binding as well as transport into the intracellular space. The surface binding is rapid and accounts for 30-40% of the total Co(2+) uptake. Transport of Co(2+) occurs at a rate of 40mug/h per 100mg dry wt. Surface binding and overall uptake show different temperature dependence. Metabolic inhibitors such as azide, dinitrophenol and fluoride depress transport of Co(2+). The overall uptake of Co(2+) exhibits a high K(m) value and hence the concentration mechanism is one of low ;affinity' for the metal. The uptake of Co(2+) varies linearly with pH in the range pH3 to pH6. Mg(2+) inhibits both surface binding and transport of Co(2+). It is suggested that the system that transports Mg(2+) is also involved in Co(2+) uptake by N. crassa.  相似文献   

12.
Equilibrium constants for the binding of azide to the ferric heme c octapeptide in 50% ethylene glycol 50% buffer were measured spectrophotometrically. The equilibrium constant for azide binding at 20 degrees C and pH* 7.4 is 29.2, which is approximately 3 to 4 orders of magnitude lower than that observed for azide binding to various ferric hemeproteins. The equilibrium constant was indepent of pH* in the range from 7 to 8. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta H0 = -26,100 J/mol (-6240 cal/mol) and delta S0 = -61.5 J/0K mol (-14.7 e.u.). Comparison of these values to the values for the heme proteins enables one to explain the differences in equiliberium constants in terms of differences in the polarity of the heme environments. The results are consistent with the concept that the oxygen affinity of heme complexes increases with the polarity of the heme environment. The data also suggest that an increase in the polarity of the heme environment should result in a corresponding increase in the susceptibility of ferrous heme dioxygen complexes toward oxidation by the dioxygen.  相似文献   

13.
When azide ion reacts with methemoglobin in unbuffered solution the pH of the solution increases. This phenomenon is associated with increases in the pK values of heme-linked ionizable groups on the protein which give rise to an uptake of protons from solution. We have determined as a functional of pH the proton uptake, delta h+, on azide binding to methemoglobin at 20 degrees C. Data for methemoglobins A (human), guinea pig and pigeon are fitted to a theoretical expression based on the electrostatic effect of these sets of heme-linked ionizable groups on the binding of the ligand. From these fits the pK values of heme-linked ionizable groups are obtained for liganded and unliganded methemoglobins. In unliganded methemoglobin pK1, which is associated with carboxylic acid groups, ranges between 4.0 and 5.5 for the three methemoglobins; pK2, which is associated with histidines and terminal amino groups, ranges from 6.2 to 6.7. In liganded methemoglobin pK1 lies between 5.8 and 6.3 and pK2 varies from 8.1 to 8.5. The pH dependences of the apparent equilibrium constants for azide binding to the three methemoglobins at 20 degrees C are well accounted for with the pK values calculated from the variation of delta h+ with pH.  相似文献   

14.
Klebsiella pneumoniae nitrogenase reduced azide, at 30 degrees C and pH 6.8-8.2, to yield ammonia (NH3), dinitrogen (N2) and hydrazine (N2H4). Reduction of (15N = 14N = 14N)-followed by mass-spectrometric analysis showed that no new nitrogen-nitrogen bonds were formed. During azide reduction, added 15N2H4 did not contribute 15N to NH3, indicating lack of equilibration between enzyme-bound intermediates giving rise to N2H4 and N2H4 in solution. When azide reduction to N2H4 was partially inhibited by 15N2, label appeared in NH3 but not in N2H4. Product balances combined with the labelling data indicate that azide is reduced according to the following equations: (formula: see text); N2 was a competitive inhibitor and CO a non-competitive inhibitor of azide reduction to N2H4. The percentage of total electron flux used for H2 evolution concomitant with azide reduction fell from 26% at pH 6.8 to 0% at pH 8.2. Pre-steady-state kinetic data suggest that N2H4 is formed by the cleavage of the alpha-beta nitrogen-nitrogen bond to bound azide to leave a nitride (= N) intermediate that subsequently yields NH3.  相似文献   

15.
The role of solvent composition and temperature on equilibrium electron transfer in seven rubredoxin variants [ Clostridium pasteurianum ( Cp), V8D, V8R, V8A, V44A Cp, Pyrococcus furiosus ( Pf), and A44V Pf] were investigated to examine the role of both monopolar and dipolar interactions. The reduction potentials of all variants decreased as the polarity of the solvent decreased. The enthalpy and entropy associated with electron transfer were determined from temperature-controlled voltammetric studies. The entropic contribution [delta( Tdelta S degrees )] to the change in the reduction potential was larger for charged variants (V8D and V8R), while the enthalpic contribution [delta(-delta H degrees )] was larger for the other mutants. The large entropy change observed for monopolar variants is likely due to solvent reorganization that occurs between oxidation states. Entropic-enthalpic compensation phenomena, an observation that most proteins have an entropic term [delta( Tdelta S degrees )] and enthalpic term [delta(-delta H degrees )] with opposite signs, was observed. A correlation of the size of the amino acid side chain with delta E degrees ', delta(-delta H degrees ), and delta( Tdelta S degrees ) is also discussed.  相似文献   

16.
The binding of warfarin and oxyphenbutazone to albumin has been studied at pH 6.8 and pH 9.2 by measuring the heat of binding of these ligands to their high-affinity binding sites on albumin (delta Ho'1). The -delta Ho'1 values for the binding of warfarin at pH 6.8 and 9.2 and oxyphenbutazone at pH 6.8 and 9.2 were found to be 16.9(+/- 0.6), 28.8(+/- 0.6), 10.5(+/- 0.4) and 17.4(+/- 0.6) kJmol-1, respectively. The Gibbs energies (delta Go'1) corresponding to these delta Ho'1 values cover a much smaller range. The pH dependences of delta Go'1 and delta Ho'1 are explained in terms of pK shifts in the albumin upon binding warfarin or oxyphenbutazone. Diazepam, which binds to a site on albumin which is different from the warfarin-oxyphenbutazone binding site, increases - delta Ho'1 for the binding of warfarin and oxyphenbutazone to albumin at pH 6.8, but it does not influence the -delta Ho'1 at pH 9.2. This phenomenon may be attributed to an allosteric interaction between the diazepam binding site and the warfarin binding site. This allosteric interaction must have its origin in a phenomenon other than the N-B transition.  相似文献   

17.
Concanavalin A (conA) inhibits the degradation of [3H]leucine-labeled cellular proteins of human lymphocytes. The lectin also stimulates the migration of non-histone proteins (NHP) from the cytoplasm to the nucleus. The increased nuclear level of NHP is associated with increased cellular binding of [3H]actinomycin D [(3H]AD). Decreased protein breakdown and increased migration of NHP are parallel events, i.e. both changes occur as a function of the lectin concentration and display a similar time course, suggesting that these events could be related. Similar effects are observed with fluoride, chloroquine and iodoacetate: these agents simultaneously decrease proteolysis and increase the nuclear level of NHP, associated with increased cellular [3H]AD binding. Fractionation of the acidic NHP according to pH 2.5-6.5 shows that proteins with a high degree of degradation in unstimulated cells correspond to proteins with a high degree of migration in conA-stimulated cells. A similar correlation was observed in fluoride-treated lymphocytes. conA, fluoride and iodoacetate decrease cellular [3H]chloroquine [(3H]CQ) accumulation, indicating a lysosomotropic effect. These and previously reported data suggest, but do not prove that conA inhibits degradation of cellular proteins via the lysosomal pathway. Ammonium chloride, methylamine and sodium azide also inhibit proteolysis and increase cellular [3H]AD binding; however, their effects are weak. On the basis of these observations it appears that lysosomal degradation and migration of NHP to the nucleus are linked; however, the mechanism of the linkage is unknown.  相似文献   

18.
Peroxidases typically bind their reducing substrates weakly, with K(d) values in the millimolar range. The binding of benzhydroxamic acid (BHA) to ferric horseradish peroxidase isoenzyme C (HRPC) [K(d) = 2.4 microM; Schonbaum, G. R. (1973) J. Biol. Chem. 248, 502-511] is a notable exception and has provided a useful tool for probing the environment of the peroxidase aromatic-donor-binding site and the distal heme cavity. Knowledge of the underlying thermodynamic driving forces is key to understanding the roles of the various H-bonding and hydrophobic interactions in substrate binding. The isothermal titration calorimetry results of this study on the binding of aromatic hydroxamic acid analogues to ferric HRPC under nonturnover conditions (no H(2)O(2) present) confirm the significance of H-bonding interactions in the distal heme cavity in complex stabilization. For example, the binding of BHA to HRPC is enthalpically driven at pH 7.0, with the H-bond to the distal Arg38 providing the largest contribution (6.74 kcal/mol) to the binding energy. The overall relatively weak binding of the hydroxamic acid analogues to HRPC is due to large entropic barriers (-11.3 to -37.9 eu) around neutral pH, with the distal Arg38 acting as an "entropic gate keeper". Dramatic enthalpy-entropy compensation is observed for BHA and 2-naphthohydroxamic acid binding to HRPC at pH 4.0. The enthalpic loss and entropic gain are likely due to increased flexibility of Arg38 in the complexes at low pH and greater access by water to the active site. Since the Soret absorption band of HRPC is a sensitive probe of the binding of hydroxamic acids and their analogues, it was used to investigate the binding of six donor substrates over the pH range of 4-12. The negligible pH dependence of the K(d) values corrected for substrate ionization suggests that enthalpy-entropy compensation is operative over a wide pH range. Examination of the thermodynamics of binding of ring-substituted hyrazides to HRPC reveals that the binding affinities of aromatic donors are highly sensitive to the position and nature of the ring substituent.  相似文献   

19.
The effect of the substrate analogues azide and fluoride on the manganese(II) zero-field interactions of different manganese-containing superoxide dismutases (SOD) was measured using high-field electron paramagnetic resonance spectroscopy. Two cambialistic types, proteins that are active with manganese or iron, were studied along with two that were only active with iron and another that was only active with manganese. It was found that azide was able to coordinate directly to the pentacoordinated Mn(II) site of only the MnSOD from Escherichia coli and the cambialistic SOD from Rhodobacter capsulatus. The formation of a hexacoordinate azide-bound center was characterized by a large reduction in the Mn(II) zero-field interaction. In contrast, all five SODs were affected by fluoride, but no evidence for hexacoordinate Mn(II) formation was detected. For both azide and fluoride, the extent of binding was no more than 50%, implying either that a second binding site was present or that binding was self-limiting. Only the Mn(II) zero-field interactions of the two SODs that had little or no activity with manganese were found to be significantly affected by pH, the manganese-substituted iron superoxide dismutase from E. coli and the Gly155Thr mutant of the cambialistic SOD from Porphyromonas gingivalis. A model for anion binding and the observed pK involving tyrosine-34 is presented.  相似文献   

20.
Microcalorimetric titrations of calmodulin with Ca2+ and trifluoperazine (TFP) at various molar ratios have been carried out at 25 degrees C and at pH 7.0. Ca2+ binding to calmodulin produces heat (-delta H) in the presence of TFP, while heat is absorbed in the absence of TFP. The total heat produced by Ca2+ binding to all four sites is increased at increasing TFP-to-calmodulin ratios, attaining a plateau at about 7. These results indicate that at the higher ratios, the enthalpy changes (delta H) associated with Ca2+ binding are affected by TFP molecules bound at both high- and low-affinity sites. In addition, the Ca2+ binding reaction of the calmodulin-TFP complex is driven solely by a favorable enthalpy change of -27 kJ/mol of site; the entropy change (delta S) is -35 J/mol/K. These thermodynamic changes are opposite to those for TFP-free calmodulin and distinctly different from other Ca2+ binding proteins such as skeletal and cardiac troponin C and parvalbumin, where the reaction is driven by favorable changes of entropy as well as enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号