首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

2.
The indoor air inhalation pathway for volatile contaminants in soil and groundwater has received much attention recently. The risk of exposure may be higher when volatile organic compounds (VOCs) reside as constituents of a free product plume below residential or commercial structures than when dissolved in groundwater or adsorbed on soil. A methodology was developed for assessing the potential for vapor phase migration—and associated risk of indoor air inhalation—of volatile constituents from a light nonaqueous phase liquid (LNAPL) plume on top of the water table. The potential risk from inhalation of VOCs in indoor air emanating from a subsurface Jet Fuel 4 (JP-4) plume by hypothetical residential receptors was assessed at a site. Chemicals of concern (COCs) were identified and evaluated using data from the composition of JP-4 mixtures and published chemical, physical, and toxicological data. The method estimates the equilibrium vapor concentrations of JP-4 constituents using Raoult's Law for partial vapor pressure of mixtures based on assumptions about the mixture composition of JP-4. The maximum allowable vapor concentration at the source (immediately above the LNAPL) corresponding to an indoor air target concentration based on acceptable risk levels are calculated using the Johnson and Ettinger model. The model calculates the attenuation factor caused by the migration of the vapor phase VOCs through the soil column above the JP-4 plume and through subsurface foundation slabs. Finally, the maximum allowable soil gas concentrations above the LNAPL for individual constituents were calculated using this methodology and compared to the calculated equilibrium vapor concentrations of each COC to assess the likelihood of potential risk from the indoor air inhalation pathway.  相似文献   

3.
Abstract

Human health has been identified to be affected more significantly by indoor air quality. Among numerous pollutants present in indoor air, formaldehyde (FA) is of great concern because of its highly hazardous nature. The concentrations of FA were determined from 20 newly decorated homes in the city of Gonabad, Iran during 2015. It was found that the indoor air levels of FA in all the sampled houses were exceptionally high in the range of 21 to 360 µg/m3 (mean of 149.3 µg/m3). If the 24-h average concentrations of FA measured from those sites were concerned, nearly 40% of them were seen to exceed the WHO guideline values (i.e., 100 µg/m3). One of the important reasons for the high concentrations could be low air exchange rates in those houses (e.g., from 0.18 to 0.37?h?1), high levels of humidity in the newly decorating houses and stronger sources in the indoor environment. Furthermore, its pollution in homes with natural ventilation was seen to be much higher than those of mechanical ventilation. Due to high levels of indoor FA, more effective control procedures should be developed and employed to reduce the risk associated with formaldehyde exposure.  相似文献   

4.
A systematic examination of cases on file with the Massachusetts Department of Environmental Protection was undertaken to identify a universe of sites with volatile organic compound (VOC) contamination in groundwater in close proximity to buildings. Such locations were grouped according to site variables, such as contaminants of concern and concentrations in various media; soil type; depth to groundwater; distance to building; and building construction. Indoor air, soil gas, and/or groundwater field data collected from these sites was then assembled and used to: (1) evaluate available transport models which describe the intrusion of vapors into buildings and predict indoor air contaminant concentrations resulting from the volatilization of VOC s in the subsurface; (2) examine the validity of established regulatory criteria; (3) identify specific trends and field conditions which appear to most influence vapor phase contaminant migration and intrusion processes; and (4) evaluate the possibility of vapor migration being inhibited by a "freshwater lens".  相似文献   

5.
- Part 1: Characterisation factors (DOI: http://dx.doi.org/10.1065/lca2004.12.194.1) Part 2: Damage scores (DOI: http://dx.doi.org/10.1065/lca2004.12.194.2) - Preamble. In this series of two papers, a methodology to calculate damages to human health caused by indoor emissions from building materials is presented and applied. Part 1 presents the theoretical foundation of the indoor emission methodology developed, as well as characterisation factors calculated for 36 organic compounds, radon and gamma radiation. Part 2 calculates damage scores of building materials with the characterisation factors presented in part 1. The relevancy of including indoor air emission in the full damage scores at a material level and a dwelling level is also quantified and discussed. Goal, Scope and Background In industrialized countries such as the Netherlands, the concentration of pollutants originating from building materials in the indoor environment has shown an increasing trend during the last decades due to improved isolation and decreased ventilation of dwellings. These pollutants may give rise to negative impacts on human health, ranging from irritation to tumours. However, such negative impacts on health are not included in current life cycle assessments of dwellings. In this study, damages to the health of occupants caused by a number of organic compounds and by radioactivity emitted by building materials, including those due to indoor exposure, have been calculated for a number of categories of common building materials. The total damage to human health due to emissions occurring in the use phase of the Dutch reference dwelling is compared with the total damage to human health associated with the rest of the life cycle of the same dwelling. Methods Human health damage scores per kilogram of building material for compartments of the Dutch reference dwelling have been calculated using the methodology described in part I of this research. This methodology includes the calculation of the fate, effect and damage factors, based on disability adjusted life years (DALYs), and has been applied assuming average concentrations of pollutants in building materials. Damage scores for health impacts of exposure to pollutants emitted during the production and the disposal phase of the same building materials were calculated using standard LCIA methodology. Results and Discussion Human health damage scores due to emissions of pollutants occurring in the use phase of building materials applied at the first or second floor are up to 20 times lower or higher than the corresponding damage scores associated with the rest of the life cycle of the same building materials. The damage scores due to emissions occurring in the use phase of building materials applied in the crawlspace are up to 105 times lower than those of building materials applied in the other compartments. The total damage to human health due to emissions occurring in the use phase of the Dutch reference dwelling has the same order of magnitude as the total damage to human health associated with the rest of the life cycle of the same dwelling. At a dwelling level, radon and gamma radiation are dominant in the human health damage score among the pollutants studied. Conclusion Health damages due to indoor exposure to contaminants emitted by building materials cannot be neglected for several materials when compared with damage scores associated with the rest of the life cycle of the same building materials. Indoor exposure to pollutants emitted by building materials should be included in the life cycle assessment of dwellings in order to make the assessment better reflect full impact of the life cycle.  相似文献   

6.
About 90% of our time is spent indoors where we are exposed to chemical and biological contaminants and possibly to carcinogens. These agents may influence the risk of developing nonspecific respiratory and neurologic symptoms, allergies, asthma and lung cancer. We review the sources, health effects and control strategies for several of these agents. There are conflicting data about indoor allergens. Early exposure may increase or may decrease the risk of future sensitization. Reports of indoor moulds or dampness or both are consistently associated with increased respiratory symptoms but causality has not been established. After cigarette smoking, exposure to environmental tobacco smoke and radon are the most common causes of lung cancer. Homeowners can improve the air quality in their homes, often with relatively simple measures, which should provide health benefits.In North America, adults spend about 87% of their time in buildings, 6% in vehicles and 7% outdoors.1 Leech and colleagues2 have reported that Canadians spend similar amounts of time indoors. Typically, more time is spent indoors in very hot or cold climates. As a result, personal exposure to airborne substances is more closely related to indoor rather than outdoor pollution.3,4 We review the sources, health effects and control strategies for several of the most important sources of residential biological and chemical contaminants.Although outdoor and indoor environments tend to be viewed as distinct entities, some outdoor pollutants enter the home. However, less air pollution enters tightly sealed homes, such as those found in colder and hotter climates where windows and doors are more regularly closed to retain conditioned air.5 In addition, economically disadvantaged families may be more likely than others to live close to roadways and industry, have lower-quality housing and have less access to air conditioning, which may result in poor indoor air quality.6 On days with high concentrations of particulate matter, cities with a high prevalence of air conditioner use report fewer hospital admissions for cardiovascular disease, chronic obstructive pulmonary disease and pneumonia compared with cities with lower air conditioner use.5Indoor air pollutants include carcinogens and biological and chemical contaminants. The latter category can be divided into combustion products and gases released from indoor materials (off-gassing emissions). Several guidelines for exposure limits for indoor air contaminents have been developed by the Canadian government (Open in a separate window  相似文献   

7.
The relationship between subsurface contaminant concentrations and indoor air concentrations, arising from the migration of contaminant vapors into buildings, is affected by a number of complex processes and parameters, many of which are subject to uncertainty. A study was undertaken to develop a simplified relationship between subsurface contaminant concentrations and indoor air concentrations. This relationship is intended for use as a screening tool to determine the relative significance of vapor transport and inhalation as an exposure scenario in the establishment of soil quality guidelines. The relationship was developed using a proprietary model to analyze the infiltration of subsurface vapors into buildings. A probabilistic analysis of the relationship, using a form of Monte Carlo simulation, was undertaken to estimate the dilution of contaminant concentrations between the source (soil gas) and point of exposure (indoor air). Using standardized values for certain parameters and generic distributions for key variables, probability distributions were generated for the dilution factor as a function of contaminant depth and soil type.  相似文献   

8.

1. 1. The major purpose of buildings is to provide a healthy and comfortable environment for occupants.

2. 2. The indoor environment is a complex system including factors like thermal, visual and acoustic conditions, indoor air quality, electromagnetic fields, static electricity and vibration.

3. 3. To obtain an indoor environment that is acceptable in terms of health as well as comfort, criteria for these factors need to be established.

4. 4. The present paper gives an overview of the criteria recommended in current existing standards and guidelines.

5. 5. As most studies to date have focussed on thermal conditions and indoor air quality, these two factors are described in more detail.

Author Keywords: Comfort; indoor environment; criteria; standards  相似文献   


9.
The purpose of this study was: (i) to characterize the school indoor environment; (ii) to evaluate self-reported prevalence of disease symptoms among Portuguese teachers; and (iii) to evaluate, as far as we know for the first time in Portugal, the impact of the indoor air quality of schools on the prevalence of disease symptoms among teachers. The study was performed in the city of Oporto, starting in 2004; it included the analysis of questionnaires fulfilled by schoolteachers (n = 177), walkthrough surveys of schools grounds, buildings, and individual classrooms (n = 76), as well as indoor air monitoring. Respirable particle increase was related to chalk use and CO2 concentrations widely exceeded reference values. Schools located near traffic lines presented higher benzene and toluene concentrations. The guideline for total viable microorganism concentration was exceeded in 35.6% of classrooms. Significant increases in disease symptoms among teachers could be related to poor indoor air quality, which was mainly due to inefficient ventilation and influence of traffic emissions. Statistically significant correlations were found between central nervous system injuries and the levels of CO2 and total volatile organic compounds, and between upper respiratory problems and mucosal irritation and the levels of TVOC and respirable particles.  相似文献   

10.
- Part 1: Characterisation factors (DOI: http://dx.doi.org/10.1065/lca2004.12.194.1) Part 2: Damage scores (DOI: http://dx.doi.org/10.1065/lca2004.12.194.2) - Preamble. In this series of two papers, a methodology to calculate damages to human health caused by indoor emissions from building materials is presented and applied. Part 1 presents the theoretical foundation of the indoor emission methodology developed, as well as characterisation factors calculated for 36 organic compounds, radon and gamma radiation. Part 2 calculates damage scores of building materials with the characterisation factors presented in part 1. The relevancy of including indoor air emission in the full damage scores at a material level and a dwelling level is also quantified and discussed. Goal, Scope and Background Methodologies based on life cycle assessment have been developed to calculate the environmental impact of dwellings. Human health damage due to exposure to substances emitted to indoor air are not included in these methodologies. In order to compare this damage with human health damages associated with the rest of the life cycle of the dwelling, a methodology has been developed to calculate damages to human health caused by pollutants emitted from building materials. Methods Fate, exposure and health effects are addressed in the calculation procedure. The methodology is suitable for organic substances, radon and elements emitting gamma radiation. The (Dutch reference) dwelling used in the calculation was divided in three compartments: crawl space, first floor and second floor. Fate factors have been calculated based on indoor and outdoor intake fractions, dose conversion factors or extrapolation from measurements. Effect factors have been calculated based on unit risk factors, (extrapolated) effect doses or linear relationship between dose and cancer cases. Damage factors are based on disability adjusted life years (DALYs). Results and Discussion Characterisation factors have been calculated for 36 organic compounds, radon and gamma radiation emitted by building materials applied in a Dutch reference dwelling. For organic compounds and radon, the characterisation factors of emissions to the second floor are 10–20% higher than the characterisation factors of emissions to the first floor. For the first and second floor, the characterisation factors are dominated by damage to human health as a result of indoor exposure. The relative contribution of carcinogenic and non-carcinogenic effects to the characterisation factors is generally within one order of magnitude, and up to three orders of magnitude for formaldehyde. Conclusion Health effects due to indoor exposure to pollutants emitted from building materials appear to be dominant in the characterisation factors over outdoor exposure to such pollutants. The health effects of emissions of organic compounds and gamma radiation in the crawl space are very small compared to the health effects of emissions into the other compartments. Using the characterisation factors calculated in this study, it is possible to calculate the human health damage due to emissions of substances and radiation emitted to indoor air and compare this damage with damages to human health associated with the rest of the life cycle of the material. This is the subject of part II of this research.  相似文献   

11.
Soil contamination by volatile hydrocarbons is of public health importance due to vapor intrusion and indoor inhalation exposures. These are assessed using measurement or predictive modeling and need to consider the key areas of subsurface partitioning and transport, dwelling ventilation, and receptor inhalation dosimetry. While subsurface partitioning and transport have been subject to intensive international investigation, limited consideration has been given to the latter. Building ventilation research has developed multi-zone airflow and contaminant dispersal models including AccuRate, an Australian model that examines natural ventilation modeling, roof and sub-floor ventilation, and identifies the importance of geometry and thermal factors on ventilation (the most sensitive variable) and indoor pollutant concentrations. Inhalation dosimetry has received recent attention due to concerns over child inhalation susceptibility and dose metrics. Research using coupled computational fluid dynamics (CFD) and physiologically based pharmaco-kinetic (PBPK) models has reported variance from previous animal models’ extrapolation while CFD modeling of transient lung vapor absorption suggests the significance of transient versus steady-state evaluation of volatiles absorption into tissue and blood. The transient nature of sub-surface fate and transport, ventilation, and inhalation uptake thus warrants integrated exploration and application in order to realize improvements in vapor intrusion assessments. These perspectives and Australian modeling initiatives are presented in this article.  相似文献   

12.
Summary The scientific study of indoor air quality has been a topic for research in the last two decades; in the late 70's it became an issue of general public perception. The public perceptions have been such tremendous stimuli because they involve aspects of health and welfare (comfort and economics). Various biomedical studies were performed to evaluate adverse biological effects associated with ambient and occupational pollutants. However, it became obvious that humans were exposed more, on a temporal basis, to their normal indoor environments than they were either in the workplace or outside. Concern with biological contaminants was always an issue, but rarely examined indoors until recently. Biological responses to the indoor environment will be discussed in this paper.  相似文献   

13.
Prevalence of different species of Penicillium and their concentrations per cubic meter of air were evaluated with the use of Hi-Air sampler system Mark II (Hi-Media Laboratories Ltd., India) in the air of homes (bed-rooms) at four different sites in Nagpur. At each of these sites, air sampling was done fortnightly in triplicate for 2 years duration from June 2000 to May 2002. The sampling was also done in triplicate for the outdoor air in the vicinity of each home on the same day immediately after the indoor sampling was over. The mean concentration of Penicillium colony forming units at four different sites in the indoor air was 32, 46.9, 35 and 35.4 CFU/m3, respectively, whereas in the outdoor air at these same four sites, the mean concentration was 24, 28, 25 and 25.8 CFU/m3 respectively. The Penicillium concentration in the indoor air was found to be higher in winter than in other seasons (ANOVA, p < 0.05). Concentration of Penicillium spp. in intramural environment was always higher than that in extramural environment. Statistically significant difference existed between intramural and extramural environments at all the sites, with maximum difference at a site, which is old crowded area of the city. During the 2-years investigations, 11 species of Penicillium were isolated from the indoor air while nine species were isolated from the air outside the homes. The dominant species of Penicillium in indoor as well as outdoor air were P. citrinum (33.78 and 32.81), P. oxalicum (19.70 and 22.60), and P. chrysogenum (17.64 and 14.50). The percentage of the Penicillium in the indoor air was 10.70 while it was 8.36 in outdoor air. Indoor air showed the presence of P. glaber and P. sclerotiorum, which were absent in the outdoor air.  相似文献   

14.
Nitrogen oxides (NOx) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOx is also formed by lightning strikes and wildland fires and is also emitted by soil. Reduced nitrogen (e.g., ammonia, NH3) is also emitted by various sources, including fertilizer application and animal waste decomposition. Nitrogen oxides, ozone (O3) and fine particulate matter (PM2.5) pollution related to atmospheric emissions of nitrogen (N) and other pollutants can cause premature death and a variety of serious health effects. Climate change is expected to impact how N-related pollutants affect human health. For example, changes in temperature and precipitation patterns are projected to both lengthen the O3 season and intensify high O3 episodes in some areas. Other climate-related changes may increase the atmospheric release of N compounds through impacts on wildfire regimes, soil emissions, and biogenic emissions from terrestrial ecosystems. This paper examines the potential human health implications of climate change and N cycle interactions related to ambient air pollution.  相似文献   

15.
The use of models to predict indoor air quality and health risk for the soil vapor transport to indoor air pathway is commonplace; however, there is significant uncertainty surrounding processes and factors affecting this pathway, and the accuracy of models used. Available screening models were evaluated through a review of model characteristics and sensitivity, and through comparisons to measured conditions at field sites. Model simulations and comparisons to field data indicate that the vapor attenuation ratio (α) is highly sensitive to certain processes (e.g., biodegradation and ad-vection) and input parameters. Comparisons of model predicted to measured a values indicate that models based on the Johnson and Ettinger (1991) framework in most cases result in predictions that are conservative by up to one to two orders of magnitude for field sites that were assessed, providing that appropriate input parameters are used. However, for sites where the advection potential is high, these models may not be conservative. The potential for advective transport of vapors into building may be significant for sites with shallow contamination, high permeability soil and foundation and high building underpressurization. The paper concludes with possible tiered management framework for the soil vapor pathway.  相似文献   

16.
The air quality in agricultural areas close to industrial emission sources (chemical, metallurgical and cement plant) was evaluated through a biomonitoring study employing the epiphytic species Tillandsia capillaris Ruíz and Pav. f. capillaris. Plants were collected from a non-contaminated area in the province of Córdoba (reference site) and transplanted back to this site and into three industrial areas representing different emission sources of air pollutants: cement plant, chemical and metallurgical industries. Biomonitors were exposed to ambient air for four periods of 3 months each during one year (for determination of physiological parameters) and for four periods of 6 months each during two years (for determination of trace elements). In the exposure period coinciding with the winter season (i.e., the dry season) the plants showed the strongest global physiological damage, possibly due to higher air pollutant concentrations. The comparison among study areas indicates the highest values of foliar damage index at the chemical industries sites, possibly due to the emission of oxidizing pollutants. On the other hand, heavy metals and trace element concentrations (V, Fe, Co, Cu, Br, Ni, Zn and Pb) were associated mainly with metallurgical industries, although the chemical industries and the cement plant were associated with Ni, Zn and Ca accumulation in the biomonitor, respectively. Considering that these sites with high industrial activity are located close to soybean producing areas, further environmental and toxicological studies are necessary, taking into account food safety and human health.  相似文献   

17.
Prevalence of different species of Penicillium and their concentrations per cubic meter of air were evaluated with the use of Hi-Air sampler system Mark II (Hi-Media Laboratories Ltd., India) in the air of homes (bed-rooms) at four different sites in Nagpur. At each of these sites, air sampling was done fortnightly in triplicate for 2 years duration from June 2000 to May 2002. The sampling was also done in triplicate for the outdoor air in the vicinity of each home on the same day immediately after the indoor sampling was over. The mean concentration of Penicillium colony forming units at four different sites in the indoor air was 32, 46.9, 35 and 35.4 CFU/m3, respectively, whereas in the outdoor air at these same four sites, the mean concentration was 24, 28, 25 and 25.8 CFU/m3 respectively. The Penicillium concentration in the indoor air was found to be higher in winter than in other seasons (ANOVA, p < 0.05). Concentration of Penicillium spp. in intramural environment was always higher than that in extramural environment. Statistically significant difference existed between intramural and extramural environments at all the sites, with maximum difference at a site, which is old crowded area of the city. During the 2-years investigations, 11 species of Penicillium were isolated from the indoor air while nine species were isolated from the air outside the homes. The dominant species of Penicillium in indoor as well as outdoor air were P. citrinum (33.78 and 32.81), P. oxalicum (19.70 and 22.60), and P. chrysogenum (17.64 and 14.50). The percentage of the Penicillium in the indoor air was 10.70 while it was 8.36 in outdoor air. Indoor air showed the presence of P. glaber and P. sclerotiorum, which were absent in the outdoor air.  相似文献   

18.
Most of researches on the impact of indoor air pollutants on atopic dermatitis (AD) have been based upon animal models, in vitro experiments and case-control studies. However, human data to elucidate the role of indoor air pollution on worsening symptoms of pre-existing AD from a longitudinal study are scarce. The objective of this prospective study was to evaluate the effect of indoor air pollution on AD symptoms in children. We surveyed 30 children with AD in a day-care centre, which moved to a new building during the study. These children stayed there for 8 hours a day Monday through Friday, and their daily symptom scores were recorded. Indoor and outdoor air pollutant levels were continuously measured 24 hours a day for 12 months (Period 1 to 4). Data were analyzed using a generalized linear mixed model. Compared to the period before moving (Period 1), concentrations of indoor air pollutants mostly increased after moving (Period 2) and decreased by natural ventilation and bake-out (Periods 3 and 4). The rate of positive AD symptom increased from 32.8% (Period 1) up to 43.8% (Period 2) and 50.5% (Period 3), then decreased to 35.4% in Period 4 (P < 0.0001). When the delayed effects of indoor air pollutants on AD symptoms 2 days later were evaluated, AD symptoms significantly increased by 12.7% (95% CI: -0.01 to 27.1) as toluene levels increased by 1 ppb (P = 0.05). In conclusion, indoor air pollutants increase the risk of AD aggravation in children and toluene in the indoor environment might act as an aggravating factor.  相似文献   

19.
Contaminant biodegradation in unsaturated soils may reduce the risks of vapor intrusion. However, the reported rates show large variability and are often derived from slurry experiments that are not representative of unsaturated conditions. Here, different laboratory setups are used to derive the biodegradation capacity of an unsaturated soil layer through which gaseous toluene migrates from the water table upwards. Experiments in static unsaturated soil microcosms at 6–30 % water-filled porosity (WFP) and unsaturated soil columns at 9, 14, and 27 % WFP were compared with liquid batches containing the same culture of Alicycliphilus denitrificans. The biodegradation rates for the liquid batches were orders of magnitude lower than for the other setups. Hence, liquid batches do not necessarily reflect optimal conditions for bacteria; either oxygen or toluene mass transfer at the cell scale or the absence of soil–water–air interfaces seemed to be limiting bacterial activity. For the column setup, the rates were limited by mass supply. The microcosm results could be described by apparent first-order biodegradation constants that increased with WFP or through a numerical model that included biodegradation as a first-order process taking place in the liquid phase only. The model liquid phase first-order rates varied between 6.25 and 20 h?1 and were not related to the water content. Substrate availability was the primary factor limiting bioactivity, with evidence for physiological stress at the lowest water-filled porosity. The presented approach is useful to derive liquid phase biodegradation rates from experimental data and to include biodegradation in vapor intrusion models.  相似文献   

20.
Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号