首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Telomerase is a ribonucleoprotein complex that synthesizes the G-rich DNA found at the 3'-ends of linear chromosomes. Human telomerase consists minimally of a catalytic protein (hTERT) and a template-containing RNA (hTR), although other proteins are involved in regulating telomerase activity in vivo. Several chaperone proteins, including hsp90 and p23, have demonstrable roles in establishing telomerase activity both in vitro and in vivo, and previous reports indicate that hsp90 and p23 are required for the reconstitution of telomerase activity from recombinant hTERT and hTR. Here we report that hTERT and hTR associate in the absence of a functional hsp90-p23 heterocomplex. We also report that hsp90 inhibitors geldanamycin and novobiocin inhibit recombinant telomerase even after telomerase is assembled. Inhibition by geldanamycin could be overcome by allowing telomerase to first bind its primer, suggesting a role for hsp90 in loading telomerase onto the telomere. Inhibition by novobiocin could not similarly be overcome but instead resulted in destabilization of the hTERT polypeptide. We propose that the hsp90-p23 complex fine tunes and stabilizes a functional telomerase structure, allowing primer loading and extension.  相似文献   

4.
5.
6.
The action of the molecular chaperone Hsp90 is essential for the activation and assembly of an increasing number of client proteins. This function of Hsp90 has been proposed to be governed by conformational changes driven by ATP binding and hydrolysis. Association of co-chaperones and client proteins regulate the ATPase activity of Hsp90. Here, we have examined the inhibition of the ATPase activity of human Hsp90beta by one such co-chaperone, human p23. We demonstrate that human p23 interacts with Hsp90 in both the absence and presence of nucleotide with a higher affinity in the presence of the ATP analogue AMP-PNP. This is consistent with an analysis of the effect of p23 on the steady-state kinetics that revealed a mixed mechanism of inhibition. Mass spectrometry of the intact Hsp90.p23 complex determined the stoichiometry of binding to be one p23 to each subunit of the Hsp90 dimer. p23 was also shown to interact with a monomeric, truncated fragment of Hsp90, lacking the C-terminal homodimerisation domain, indicating dimerisation of Hsp90 is not a prerequisite for association with p23. Complex formation between Hsp90 and p23 increased the apparent affinity of Hsp90 for AMP-PNP and completely inhibited the ATPase activity. We propose a model where the role of p23 is to lock individual subunits of Hsp90 in an ATP-dependent conformational state that has a high affinity for client proteins.  相似文献   

7.
Understanding molecular principles underlying Hsp90 chaperone functions and modulation of client activity is fundamental to dissect activation mechanisms of many proteins. In this work, we performed a computational investigation of the Hsp90-Hsp70-Hop-CR client complex to examine allosteric regulatory mechanisms underlying dynamic chaperone interactions and principles of chaperone-dependent client recognition and remodeling. Conformational dynamics analysis using high-resolution coarse-grained simulations and ensemble-based local frustration analysis suggest that the Hsp90 chaperone could recognize and recruit the GR client by invoking reciprocal dynamic exchanges near the intermolecular interfaces with the client. Using mutational scanning of the intermolecular residues in the Hsp90-Hsp70-Hop-GR complex, we identified binding energy hotspots in the regulatory complex. Perturbation-based network analysis and dynamic fluctuations-based modeling of allosteric residue potentials are employed for a detailed analysis of allosteric interaction networks and identification of conformational communication switches. We found that allosteric interactions between the Hsp90, the client-bound Hsp70 and Hop cochaperone can define two allosteric residue clusters that control client recruitment in which the intrinsic Hsp70 allostery is exploited to mediate integration of the Hsp70-bound client into the Hsp90 chaperone system. The results suggest a model of dynamics-driven allostery that enables efficient client recruitment and loading through allosteric couplings between intermolecular interfaces and communication switch centers. This study showed that the Hsp90 interactions with client proteins may operate under dynamic-based allostery in which ensembles of preexisting conformational states and intrinsic allosteric pathways present in the Hsp90 and Hsp70 chaperones can be exploited for recognition and integration of substrate proteins.  相似文献   

8.
The ribonucleoprotein telomerase holoenzyme is minimally composed of a catalytic subunit, hTERT, and its associated template RNA component, hTR. We have previously found two additional components of the telomerase holoenzyme, the chaperones p23 and heat shock protein (hsp) 90, both of which are required for efficient telomerase assembly in vitro and in vivo. Both hsp90 and p23 bind specifically to hTERT and influence its proper assembly with the template RNA, hTR. We report here that the hsp70 chaperone also associates with hTERT in the absence of hTR and dissociates when telomerase is folded into its active state, similar to what occurs with other chaperone targets. Our data also indicate that hsp90 and p23 remain associated with functional telomerase complexes, which differs from other hsp90-folded enzymes that require only a transient hsp90.p23 binding. Our data suggest that components of the hsp90 chaperone complex, while required for telomerase assembly, remain associated with active enzyme, which may ultimately provide critical insight into the biochemical properties of telomerase assembly.  相似文献   

9.
Tubocapsenolide A (TA), a novel withanolide-type steroid, exhibits potent cytotoxicity against several human cancer cell lines. In the present study, we observed that treatment of human breast cancer MDA-MB-231 cells with TA led to cell cycle arrest at G(1) phase and apoptosis. The actions of TA were correlated with proteasome-dependent degradation of Cdk4, cyclin D1, Raf-1, Akt, and mutant p53, which are heat shock protein 90 (Hsp90) client proteins. TA treatment induced a transient increase in reactive oxygen species and a decrease in the intracellular glutathione contents. Nonreducing SDS-PAGE revealed that TA rapidly and selectively induced thiol oxidation and aggregation of Hsp90 and Hsp70, both in intact cells and in cell-free systems using purified recombinant proteins. Furthermore, TA inhibited the chaperone activity of Hsp90-Hsp70 complex in the luciferase refolding assay. N-Acetylcysteine, a thiol antioxidant, prevented all of the TA-induced effects, including oxidation of heat shock proteins, degradation of Hsp90 client proteins, and apoptosis. In contrast, non-thiol antioxidants (trolox and vitamin C) were ineffective to prevent Hsp90 inhibition and cell death. Taken together, our results demonstrate that the TA inhibits the activity of Hsp90-Hsp70 chaperone complex, at least in part, by a direct thiol oxidation, which in turn leads to the destabilization and depletion of Hsp90 client proteins and thus causes cell cycle arrest and apoptosis in MDA-MB-231 cells. Therefore, TA can be considered as a new type of inhibitor of Hsp90-Hsp70 chaperone complex, which has the potential to be developed as a novel strategy for cancer treatment.  相似文献   

10.
11.
Stimulation of the weak ATPase activity of human hsp90 by a client protein.   总被引:7,自引:0,他引:7  
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the folding and assembly of a limited set of "client" proteins, many of which are involved in signal transduction pathways. In vivo, it is found in complex with additional proteins, including the chaperones Hsp70, Hsp40, Hip and Hop (Hsp-interacting and Hsp-organising proteins, respectively), as well as high molecular mass immunophilins, such as FKBP59, and the small acidic protein p23. The role of these proteins in Hsp90-mediated assembly processes is poorly understood. It is known that ATP binding and hydrolysis are essential for Hsp90 function in vivo and in vitro.Here we show, for the first time, that human Hsp90 has ATPase activity in vitro. The ATPase activity is characterised using a sensitive assay based on a chemically modified form of the phosphate-binding protein from Escherichia coli. Human Hsp90 is a very weak ATPase, its activity is significantly lower than that of the yeast homologue, and it has a half-life of ATP hydrolysis of eight minutes at 37 degrees C. Using a physiological substrate of Hsp90, the ligand-binding domain of the glucocorticoid receptor, we show that this "client" protein can stimulate the ATPase activity up to 200-fold. This effect is highly specific and unfolded or partially folded proteins, which are known to bind to Hsp90, do not affect the ATPase activity. In addition, the peroxisome proliferator-activated receptor, which is related in both sequence and structure to the glucocorticoid receptor but which does not bind Hsp90, has no observable effect on the ATPase activity.We establish the effect of the co-chaperones Hop, FKBP59 and p23 on the basal ATPase activity as well as the client protein-stimulated ATPase activity of human Hsp90. In contrast with the yeast system, human Hop has little effect on the basal rate of ATP hydrolysis but significantly inhibits the client-protein stimulated rate. Similarly, FKBP59 has little effect on the basal rate but stimulates the client-protein stimulated rate further. In contrast, p23 inhibits both the basal and stimulated rates of ATP hydrolysis.Our results show that the ATPase activity of human Hsp90 is highly regulated by both client protein and co-chaperone binding. We suggest that the rate of ATP hydrolysis is critical to the mode of action of Hsp90, consistent with results that have shown that both over and under-active ATPase mutants of yeast Hsp90 have impaired function in vivo. We suggest that the tight regulation of the ATPase activity of Hsp90 is important and allows the client protein to remain bound to Hsp90 for sufficient time for activation to occur.  相似文献   

12.
Hsp90 is an essential chaperone that is necessary for the folding, stability and activity of numerous proteins. In this study, we demonstrate that free radicals formed during oxidative stress conditions can cleave Hsp90. This cleavage occurs through a Fenton reaction which requires the presence of redox-active iron. As a result of the cleavage, we observed a disruption of the chaperoning function of Hsp90 and the degradation of its client proteins, for example, Bcr-Abl, RIP, c-Raf, NEMO and hTert. Formation of Hsp90 protein radicals on exposure to oxidative stress was confirmed by immuno-spin trapping. Using a proteomic analysis, we determined that the cleavage occurs in a conserved motif of the N-terminal nucleotide binding site, between Ile-126 and Gly-127 in Hsp90β, and between Ile-131 and Gly-132 in Hsp90α. Given the importance of Hsp90 in diverse biological functions, these findings shed new light on how oxidative stress can affect cellular homeostasis.  相似文献   

13.
With assistance from co-chaperone partner proteins, Hsp90 plays an essential positive role in supporting the structure and function of numerous client proteins in vivo. Hsp90's co-chaperone partnerships are believed to regulate and/or target its function. Here we describe associations between Hsp90 chaperone machinery and another chaperone, the 97-kDa valosin-containing protein VCP. Coimmunoadsorption assays indicate that VCP occurs in one or more native heterocomplexes containing Hsp90 and the Hsp90 partner proteins Cdc37, FKBP52, and p23. Functional characterizations indicate that VCP is not an Hsp90 substrate, but rather demonstrate the biochemical hallmarks of an Hsp90 co-chaperone. Potential roles for a collaboration between for Hsp90 and VCP are discussed.  相似文献   

14.
15.
16.
Sgt1p is a conserved, essential protein required for kinetochore assembly in both yeast and animal cells. Sgt1p has homology to both TPR and p23 domains, sequences often found in proteins that interact with and regulate the molecular chaperone, Hsp90. The presence of these domains and the recent findings that Sgt1p interacts with Hsp90 has led to the speculation that Sgt1p and Hsp90 form a co-chaperone complex. To test this possibility, we have used purified recombinant proteins to characterize the in vitro interactions between yeast Sgt1p and Hsp82p (an Hsp90 homologue in yeast). We show that Sgt1p interacts directly with Hsp82p via its p23 homology region in a nucleotide-dependent manner. However, Sgt1p binding does not alter the enzymatic activity of Hsp82p, suggesting that it is distinct from other co-chaperones. We find that Sgt1p can form a ternary chaperone complex with Hsp82p and Sti1p, a well characterized Hsp90 co-chaperone. Sgt1p interacts with its binding partner Skp1p through its TPR domains and links Skp1p to the core Hsp82p-Sti1p co-chaperone complex. The multidomain nature of Sgt1p and its ability to bridge the interaction between Skp1p and Hsp82p argue that Sgt1p acts as a "client adaptor" recruiting specific clients to Hsp82p co-chaperone complexes.  相似文献   

17.
The ubiquitous molecular chaperone Hsp90 acts in concert with a cohort of associated proteins to facilitate the functional maturation of a number of cellular signaling proteins, such as steroid hormone receptors and oncogene tyrosine kinases. The Hsp90-associated protein p23 is required for the assembly of functional steroid aporeceptor complexes in cell lysates, and Hsp90-binding ansamycin antibiotics disrupt the activity of Hsp90-dependent signaling proteins in cultured mammalian cells and prevent the association of p23 with Hsp90-receptor heterocomplexes; these observations have led to the hypotheses that p23 is required for the maturation of Hsp90 target proteins and that ansamycin antibiotics abrogate the activity of such proteins by disrupting the interaction of p23 with Hsp90. In this study, I demonstrate that ansamycin antibiotics disrupt the function of Hsp90 target proteins expressed in yeast cells; prevent the assembly of Sba1, a yeast p23-like protein, into steroid receptor-Hsp90 complexes; and result in the assembly of receptor-Hsp90 complexes that are defective for ligand binding. To assess the role of p23 in Hsp90 target protein function, I show that the activity of Hsp90 target proteins is unaffected by deletion of SBA1. Interestingly, steroid receptor activity in cells lacking Sba1 displays increased sensitivity to ansamycin antibiotics, and this phenotype is rescued by the expression of human p23 in yeast cells. These findings indicate that Hsp90-dependent signaling proteins can achieve a functional conformation in vivo in the absence of p23. Furthermore, while the presence of p23 decreases the sensitivity of Hsp90-dependent processes to ansamycin treatment, ansamycin antibiotics disrupt signaling through some mechanism other than altering the Hsp90-p23 interaction.  相似文献   

18.
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.  相似文献   

19.
20.
The molecular chaperone Hsp90 regulates the activity and stability of a set of client proteins. Despite progress in understanding its mechanism, the interaction of Hsp90 with clients has remained enigmatic. Now, in a recent issue of Molecular Cell, Street and coworkers present results that integrate the client in the Hsp90 chaperone cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号