首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
The Bacillus sp. strain PHN 1 capable of degrading p-cresol was immobilized in various matrices namely, polyurethane foam (PUF), polyacrylamide, alginate and agar. The degradation rates of 20 and 40 mM p-cresol by the freely suspended cells and immobilized cells in batches and semi-continuous with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 20 and 40 mM p-cresol than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- immobilized cells could be reused for more than 35 cycles, without losing any degradation capacity and showed more tolerance to pH and temperature changes than free cells. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for degradation of p-cresol.  相似文献   

2.
Nitroaromatic compounds are major chemical pollutants because of their widespread use and toxicity. Bioremediation of such toxic nitroaromatic compounds using microorganisms may provide an effective method for detoxification. Bacillus flexus strain XJU-4, capable of degrading 3-nitrobenzoate, was immobilized in various matrices, namely polyurethane foam (PUF), polyacrylamide, sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA) and agar. The degradation of 12 and 24 mM 3-nitrobenzoate, by both freely suspended cells and immobilized cells, in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation rates of 12 and 24 mM — nitrobenzoate than freely suspended cells, and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused for more than 21 cycles without losing any degradation capacity. These results revealed the feasibility of using PUF-immobilized cells of B. flexus for the enhanced degradation of — nitrobenzoate.  相似文献   

3.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

4.
Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.  相似文献   

5.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm2) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l−1, both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l−1 phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l−1. However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.  相似文献   

6.
The filamentous fungus, Rhizopus nigricans, was immobilized in polyacrylamide, alginate, and agar gels and its ability to 11α-hydroxylate progesterone was examined. No activity was detected using polyacrylamide gel but both agar and alginate gels have proved capable of hydroxylation. Agar gels displayed faster rates and higher yields. It was possible to induce hydroxylase synthesis within agar and alginate gels, and microscopical examination provided evidence for hyphal growth within these gels. The concept of increased biomass was used to explain the observed increase in the rates of hydroxylase activity of the immobilized cells. Conversely, hyphal overcrowding was postulated for the rapid inactivation observed under some operating conditions.  相似文献   

7.
Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization.  相似文献   

8.
Summary Glucose fermentation bySaccharomyces cerevisiae immobilized by entrapment in agar, carrageenan, alginate and polyacrylamide gels, was compared to that of freely suspended cells at concentrations of 10–50% (w.w.) sugar. The rate of ethanol production by the entrapped cells was 20–25% higher than that of the free cells. Concentrations of up to 14,5% w/w ethanol (30% glucose initial concentration) could be obtained. A number of hypotheses for the improved alcoholic fermentation are discussed.  相似文献   

9.
Chen D  Chen J  Zhong W  Cheng Z 《Bioresource technology》2008,99(11):4702-4708
Cells of Methylibium petroleiphilum PM1 were immobilized in gel beads to degrade methyl tert-butyl ether (MTBE). Calcium alginate, agar, polyacrylamide and polyvinvyl alcohol were screened as suitable immobilization matrices, with calcium alginate demonstrating the fastest MTBE-degradation rate. The rate was accelerated by 1.8-fold when the beads had been treated in physiological saline for 24h at 28 degrees C. MTBE degradation in mineral salts medium (MSM) was accompanied by the increase of biomass. The half-life of MTBE-degradation activity for the encapsulated cells stored at 28 degrees C was about 120 h, which was obviously longer than that of free cells (approximately 36 h). Efficient reusability of the beads up to 30 batches was achieved in poor nutrition solution as compared to only 6 batches in MSM. The immobilized cells could be operated in a packed-bed reactor for degradation of 10 mg L(-1) MTBE in groundwater with more than 99% removal efficiency at hydraulic retention time of 20 min. These results suggested that immobilized cells of PM1 in bioreactor might be applicable to a groundwater treatment system for the removal of MTBE.  相似文献   

10.
Biodegradation of toxic amides by immobilized Rhodococcus rhodochrous NHB-2 has been studied to generate data for future development of reactors for the treatment of simulated wastewater containing various toxic amides. The whole resting cells were immobilized in different matrices like agar, polyacrylamide and alginate. Agar gel beads were selected for the treatment of simulated wastewater containing 100mM each acetamide, propionamide, and 10mM of acrylamide and packed in a highly compact five-stage plug flow reactor. The immobilized bacterium worked well in a broad pH range from 5 to 10, with an optimum at 8.7. The apparent K m-value for the turnover of acetamide for the resting cells was determined to be around 40mM at pH 8.5 and 55°C, whereas the K m-value of the purified amidase was predicted to be about 20 mM. This organism exhibited greater turnover of aliphatic amides as compared to aromatic amides. Although these cells showed maximal amide-degrading activity at 55°C, simulated wastewater treatment was carried out at 45°C, because of the greater stability of the amidase activity at that temperature. Of note, indices for overall temperature stability, based on the temperature dependence of apparent first order kinetic temperature denaturation constants, were determined to be –7.9±1.1×10–4, and –13.7±1.3×10–4, –14.5±0.7×10–4, and –13.7±0.8×10–4°Cmin, for free cells and cells immobilized in alginate, agar and polyacrylamide respectively. After 250min the reactor showed maximum degradation of acetamide, propionamide and acrylamide of about 97, 100 and 90%, respectively by using 883 enzyme activity units per reactor stage. The results of this investigation showed that R. rhodochrous NHB-2 expressing thermostable amidase could be used for the efficient treatment of wastewater containing toxic amides. Therefore, we suggest that this microbe has a very high potential for the detoxification of toxic amides from industrial effluents and other wastewaters.  相似文献   

11.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

12.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   

13.
Summary The degradation of phenol by cells ofFusarium flocciferum immobilized by entrapment in agar, K — carrageenan, alginate and polyurethane, and by adsorption on preformed polyurethane foams was investigated. Entrapped and adsorbed cells in polyure —thane were able to degrade phenol up to 4g/l and 2.5g/l respectively with no loss of their activity under repetead use for more than two months.  相似文献   

14.
Erythromycin production by Saccharopolyspora erythraea immobilized in 2% (w/v) calcium alginate or grown in medium containing 20 g sodium alginate/l inoculated with free cells was almost twice more than that of the control. S. erythraea did not consume alginate, agar, dextran, silicon antifoaming agent or cyclodextrin as a carbon source, although, all of these increased the production of erythromycin. Highest titer of erythromycin (2.3 times more than that of the control) was achieved in medium containing 1 g agar/l.  相似文献   

15.
Burkholderia cepacia PCL3 (GenBank accession number of EF990634) is a carbofuran degrader isolated from phytoremediated rhizosphere soil in our laboratory. Free and the immobilized PCL3 on corncob and sugarcane bagasse were investigated for their abilities to degrade carbofuran in Basal Salt Medium (BSM) and soil microcosm. The reusability and survival of immobilized PCL3 in comparison to free cells were also examined. Short half-lives (t1/2) of carbofuran of 3–4 d in BSM were obtained using the isolate PCL3 in both free and immobilized cell forms. Immobilized cells could survive (106–107 cfu ml?1) through 30 d of incubation, while the number of free cells decreased continuously after 10 d. Immobilized B. cepacia PCL3 could be reused twice without loss in their abilities to degrade carbofuran in BSM, which suggested an advantage of using immobilized cell over free cell. Free and immobilized cells were augmented into soil and showed an effective capability to remediate carbofuran residues, both of which indicated by 5-folds decrease in carbofuran half-lives in augmented soil. Immobilization of PCL3 on corncob and sugarcane bagasse provided the possibilities of reusing the cells as well as improving the cell survival without decreasing carbofuran degradation activity.  相似文献   

16.
A bacterial strain (TA7) capable of consuming three N-methylated carbamates as sole nitrogen and carbon source was isolated and identified as “Enterobacter cloacae” on the basis of 16S rRNA, from carbamate contaminated agricultural soil by enrichment culture technique. The agar entrapment was used to immobilize the bacterial cells. Both the free as well as the immobilized cells were used to study the degradation of three carbamets viz. aldicarb, carbofuran, and carbaryl. The immobilized cells degraded all the three carbamates much faster than their free cell counterparts. The biodegradation kinetics of aldicarb, carbaryl, and carbofuran was studied using 50 ppm as initial concentration in the presence of free cells. The average values of Ks for aldicarb, carbofuran, and carbaryl were 22.6, 17.87, and 8.9 mg/L, respectively, whereas the values for µmax were calculated as 1.35, 1.3, and 1.2 mg/l/h?1. The results indicated that the bacterium has high affinity towards all the three carbamates. However, relatively higher affinity is for carbaryl, in comparison with carbofuran and aldicarb. Results indicate the potential of E. Cloacae TA7 to remediate N-methylated carbamates polluted water and soil.  相似文献   

17.
A bacterial strain Pseudomonas sp. a3 capable of degrading nitrobenzene, phenol, aniline, and other aromatics was isolated and characterized. When nitrobenzene was degraded, the release of NH(4) (+) was detected, but not of NO(2) (-). This result implied that nitrobenzene might have a partial reductive metabolic pathway in strain a3. However, aniline appeared as one of the metabolites during the aerobic degradation of nitrobenzene. Moreover, the appearance of 2-aminophenol during aniline degradation by strain a3 indicated that novel initial reactions existed during the degradation of nitrobenzene and aniline by strain a3. Strain a3 was immobilized in the mixed carrier of polyvinyl alcohol and sodium alginate to improve its degrading efficiency. The optimal concentrations of polyvinyl alcohol and sodium alginate in the mixed carrier were 9 and 3 %, respectively. The immobilized cells had stable degradation activity and good mechanical properties in the recycling tests. The immobilized cells also exhibited higher tolerances in acidic (pH 4-5) and highly saline (10 % NaCl) environments than those of free cells. The biodegradation of nitrobenzene mixed with aniline and phenol using immobilized cells of Pseudomonas sp. a3 was also greatly improved compared with those of free cells. The immobilized cells could completely degrade 300 mg L(-1) nitrobenzene within 10 h with 150 mg L(-1) aniline and 150 mg L(-1) phenol. This result revealed that the immobilized cells of Pseudomonas sp. a3 could be a potential candidate for treating nitrobenzene wastewater mixed with other aromatics.  相似文献   

18.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

19.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

20.
Phenol is one of the major toxic pollutants in the wastes generated by a number of industries and needs to be eliminated before their discharge. Although microbial degradation is a preferred method of waste treatment for phenol removal, the general inability of the degrading strains to tolerate higher substrate concentrations has been a bottleneck. Immobilization of the microorganism in suitable matrices has been shown to circumvent this problem to some extent. In this study, cells of Pseudomonas sp. CP4, a laboratory isolate that degrades phenol, cresols, and other aromatics, were immobilized by entrapment in Ca-alginate and agar gel beads, separately and their performance in a fluidized bed bioreactor was compared. In batch runs, with an aeration rate of 1 vol−1 vol−1 min−1, at 30°C and pH 7.0 ± 0.2, agar-encapsulated cells degraded up to 3000 mg l−1 of phenol as compared to 1500 mg l−1 by Ca-alginate-entrapped cells whereas free cells could tolerate only 1000 mg l−1. In a continuous process with Ca-alginate entrapped cells a degradation rate of 200 mg phenol l−1 h−1 was obtained while agar-entrapped cells were far superior and could withstand and degrade up to 4000 mg phenol l−1 in the feed with a maximum degradation rate of 400 mg phenol l−1 h−1. The results indicate a clear possibility of development of an efficient treatment technology for phenol containing waste waters with the agar-entrapped bacterial strain, Pseudomonas sp. CP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号