首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of experimental models of organ-specific autoimmunity involve a period of peripheral lymphopenia prior to disease onset. There is now considerable evidence that the development of autoimmune disease in these models is due to the absence of CD4+CD25+ regulatory T cells. However, the role of CD4+CD25+ regulatory T cells in the prevention of autoimmune disease in normal individuals has not been defined. Here we have assessed the affect of depletion of CD4+CD25+ regulatory T cells in BALB/c mice on the induction of autoimmune gastritis. The CD4+CD25+ T cell population was reduced to 95% of the original population in adult thymectomized mice by treatment with anti-CD25 mAb. By 48 days after the anti-CD25 treatment, the CD4+CD25+ regulatory T cell population had returned to a normal level. Treatment of thymectomized adult mice for up to 4 weeks with anti-CD25 mAb did not result in the development of autoimmune gastritis. Furthermore, we have demonstrated that depletion of CD4+CD25+ regulatory T cells, together with transient CD4+ T lymphopenia, also did not result in the development of autoimmune gastritis, indicating that peripheral expansion of the CD4+ T cell population, per se, does not result in autoimmunity in adult mice. On the other hand, depletion of CD4+CD25+ T cells in 10-day-old euthymic mice resulted in a 30% incidence of autoimmune gastritis. These data suggest that CD4+CD25+ regulatory T cells may be important in protection against autoimmunity while the immune system is being established in young animals, but subsequently other factors are required to initiate autoimmunity.  相似文献   

2.
AKR mice are highly susceptible to spontaneous T cell lymphomagenesis and thymus removal at the age of 1 to 3 mo greatly reduces its development. Twelve-mo-old AKR mice thymectomized at young age were shown previously to carry potential lymphoma cells that could be triggered to develop into B cell lymphomas (80 to 100%) after removal from their host "restrictive" environment into young histocompatible hosts. Additional attempts were made to terminate the potential lymphoma cell dormant state in 12-mo-old thymectomized AKR mice. Replenishment of some deficiencies caused by thymectomy at a young age, including a s.c. syngeneic thymus graft or a single injection of the dual tropic recombinant virus isolates DTV-71 or MCF-247 into 12-mo-old thymectomized AKR mice resulted in Ly-1+ pre-B or B cell lymphoma development in 80 to 98% of these treated mice. In vivo elimination of T cell subsets by administration of cyclosporin A or by mAb expressed on Th cells (anti-CD4) or cytotoxic T cells (anti-CD8) stimulated the progression of dormant potential lymphoma cells towards B cell lymphoma development. The most striking results were observed after administration of anti-CD8 mAb: 90 to 100% of these treated mice developed Ly-1+ B cell lymphomas within 80 days. The effect of rIL-2 on dormant PLC was also tested. Administration of rIL-2 to 12-mo-old thymectomized mice terminated tumor dormancy in 94% of the treated mice within 66 days. Tests of the resulting B lymphomas for dual tropic recombinant virus/mink cell focus-inducing virus infection indicated that the breakdown of tumor dormancy did not result from development of pathogenic class I mink cell focus-inducing viruses. These results suggest that T cell subsets and/or their products are involved in the proliferation arrest of potential lymphoma cells present in thymectomized AKR mice.  相似文献   

3.
Depletion of B cells in murine lupus: efficacy and resistance   总被引:7,自引:0,他引:7  
In mice, genetic deletion of B cells strongly suppresses systemic autoimmunity, providing a rationale for depleting B cells to treat autoimmunity. In fact, B cell depletion with rituximab is approved for rheumatoid arthritis patients, and clinical trials are underway for systemic lupus erythematosus. Yet, basic questions concerning mechanism, pathologic effect, and extent of B cell depletion cannot be easily studied in humans. To better understand how B cell depletion affects autoimmunity, we have generated a transgenic mouse expressing human CD20 on B cells in an autoimmune-prone MRL/MpJ-Fas(lpr) (MRL/lpr) background. Using high doses of a murine anti-human CD20 mAb, we were able to achieve significant depletion of B cells, which in turn markedly ameliorated clinical and histologic disease as well as antinuclear Ab and serum autoantibody levels. However, we also found that B cells were quite refractory to depletion in autoimmune-prone strains compared with non-autoimmune-prone strains. This was true with multiple anti-CD20 Abs, including a new anti-mouse CD20 Ab, and in several different autoimmune-prone strains. Thus, whereas successful B cell depletion is a promising therapy for lupus, at least some patients might be resistant to the therapy as a byproduct of the autoimmune condition itself.  相似文献   

4.
CD4+CD25+ T regulatory (T(R)) cells are an important regulatory component of the adaptive immune system that limit autoreactive T cell responses in various models of autoimmunity. This knowledge was generated by previous studies from our lab and others using T(R) cell supplementation and depletion. Contrary to dogma, we report here that injection of anti-CD25 mAb results in the functional inactivation, not depletion, of T(R) cells, resulting in exacerbated autoimmune disease. Supporting this, mice receiving anti-CD25 mAb treatment display significantly lower numbers of CD4+CD25+ T cells but no change in the number of CD4+FoxP3+ T(R) cells. In addition, anti-CD25 mAb treatment fails to both reduce the number of Thy1.1+ congenic CD4+CD25+ T(R) cells or alter levels of CD25 mRNA expression in treatment recipients. Taken together, these findings have far-reaching implications for the interpretation of all previous studies forming conclusions about CD4+CD25+ T(R) cell depletion in vivo.  相似文献   

5.
Grafting of cells from B10.D2 (H-2d) donors into H-2 compatible lethally irradiated (DBA/2 x B10.D2)F1 hosts results in a severe graft-vs-host reaction (GVHR), developed against DBA/2 non-H-2 Ag, with only 0 to 10% of animals surviving. This GVHR mortality rate is dramatically reduced (90 to 100% of animals survive) by donor preimmunization against Mlsa determinants. The protection against GVHR correlates with a decreased B10.D2 anti-DBA/2 proliferative response in vitro. Both in vivo and in vitro phenomena are associated with activation of CD5+ suppressor T cells in the spleens of immunized mice. The present work was designed to study the origin of these suppressor cells and to further characterize their phenotype. The results show that significant suppression is not inducible in "B" mice. In contrast, in mice that were only thymectomized or else pretreated in vivo with anti-CD4 or anti-CD8 mAb, the suppressor cells are activated as efficiently as in normal mice. The suppression of GVHR mortality and proliferative responses in vitro is lost after depletion from preimmunized splenocytes of CD5+ T cells and remains unaltered after depletion of CD4+ or CD8+ T cells or both. Depletion of asialo GM1+ cells removes all NK activity, whereas the suppression is decreased only slightly. FACS analysis showed that double-negative (DN) cells from normal and immunized mice contain both CD3+ and CD3- cells; the vast majority of the CD3+ DN T cells express the alpha/beta T cell receptor. Suppression of GVHR and of proliferative responses in vitro are abrogated after elimination of CD3+ cells. These results suggest that Mlsa generated suppressor cells: 1) are derived from post-thymic long-lived T cell precursors; 2) are low asialo GM-1+ but do not exhibit NK activity; 3) belong to a subset of peripheral CD5+ DN T cells bearing a CD3-associated alpha/beta-heterodimer.  相似文献   

6.
Treatment with mAb to the L3T4 Ag on Th cells can inhibit autoimmunity in mice. However, the mechanism by which anti-L3T4 inhibits autoimmunity is not known. In these studies, lupus-prone NZB/NZW F1 (B/W) mice were treated with F(ab')2 fragments of mAb to L3T4 to determine whether Th cell depletion is required for the beneficial effects of anti-L3T4. We first showed that treatment of female B/W mice with F(ab')2 anti-L3T4 from age 5 to 9 mo significantly reduced autoantibody production without depleting L3T4+ cells. However, treatment was complicated by the development of a host immune response to the rat mAb fragments. To circumvent this problem, female B/W mice were treated with a single high-dose of intact rat mAb to L3T4 (GK1.5) at age two mo. to induce immune tolerance to the mAb. Then, after recovery of L3T4+ cells, the mice were treated from age four to 14 mo with either F(ab')2 anti-L3T4 (0.5 mg 3 times per wk), intact anti-L3T4, or saline. In mice tolerized by this regimen, neither the F(ab')2 rat mAb nor the intact rat mAb elicited a host response. The mAb fragments bound target Ag but did not deplete the Th cells, whereas intact mAb to L3T4 profoundly depleted the L3T4+ cells. Despite this difference, both therapies had the same substantial beneficial effects on autoimmunity. They significantly decreased anti-DNA Ab production, improved renal function and prolonged survival. The initial tolerizing dose, by itself, did not inhibit autoimmunity. These findings show that anti-L3T4 suppresses autoimmunity by directly altering Th cell function through the L3T4 Ag, and not solely by depleting Th cells. They also document the detrimental effects of the host immune response to therapy with anti-L3T4 mAb, and they demonstrate a new strategy by which this response may be prevented.  相似文献   

7.
Complete elimination of CD4 cells by in vivo treatment with anti-CD4 mAb may result in B cell polyclonal activation. Additionally, mice treated with doses of anti-CD4 that eliminate half the CD4 cells produced higher anti-SRBC antibody responses than controls. This suggests that partial CD4 depletion enhances Th2-like function. To test this hypothesis we examined Th1 and Th2 lymphokine potential in mice partially depleted of CD4 cells. We measured IL-4 and IFN-gamma secretion by stimulated unfractionated spleen cells and analyzed activated, purified CD4 cells by RNA in situ hybridization to determine the percentage of IFN-gamma- or IL-4-producing cells. Unfractionated splenocytes from partially CD4-depleted mice secreted more IL-4 and less IFN-gamma than splenocytes from control mice. In situ hybridization proved that CD4 cells from partially depleted mice contained a higher percentage of IL-4 and a lower percentage of IFN-gamma-producing cells than controls. These results indicate that treatment with a dose of mAb resulting in partial CD4 depletion may permit increased Th2-like lymphokine expression. This study also provides evidence that cells committed to Th2-like function exist in vivo in mice.  相似文献   

8.
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.  相似文献   

9.
The effect of thymectomy on lupus-prone mice   总被引:9,自引:0,他引:9  
The effect of neonatal thymectomy on the induction and/or modification of murine SLE disease was examined in several representative groups of mice with early-life SLE (MRL/Mp-lpr/lpr females, BXSB males, (NZB X W)F1 females, (NZW X BXSB)F1 males and females), late-life SLE (MRL/Mp-+/+ and BXSB females), and normal strains (BALB/c and C57BL/6 females). Our results indicated that thymectomy prevented disease only in the MRL/Mp-lpr/lpr SLE mice, and that this effect diminished as thymectomy was delayed beyond 3 wk post-natally. In the other SLE mice studied, neonatal thymectomy did not modify disease symptoms to any significant degree. Moreover, depletion of mature T cells from donor BXSB male bone marrow did not affect the expression of early-life SLE in thymectomized BXSB female recipients. Neonatal thymectomy did not induce SLE in normal mice. Of note, neonatal thymectomy did not completely deplete the Thy-1.2+ cell population, i.e., 10 to 15% remained in the spleens of the thymectomized mice. This incomplete T cell depletion, together with the previously demonstrated dependence on and hyperresponsiveness of BXSB and (NZB X W)F1 B cells to T helper cell-derived accessory signals, cast doubts on earlier conclusions that B cells from some SLE mice can autonomously proliferate and differentiate to autoantibody-secreting cells. It seems more appropriate to conclude that B cells from the various SLE mice vary in their degree of response to, and production of, T cell-derived helper signals, and thus in their expression of B cell hyperactivity and disease.  相似文献   

10.
Experiments were undertaken to determine whether the depletion of CD4+ T cells from mice bearing an advanced immunogenic SA-1 sarcoma would result in an enhanced ability of interleukin-2 (IL-2) to cause tumor regression. The results show that whereas IL-2 therapy given as a 5-day course starting on day 10 of tumor growth caused complete regression of the tumor, it failed to cause regression if started on day 15 of tumor growth. However, in mice depleted of CD4+ T cells by treatment with anti-CD4 monoclonal antibody (mAb), IL-2 therapy started on day 15 resulted in appreciable tumor regression in most animals, and the therapeutic effect was greatly increased if two consccutive courses of anti-CD4 mAb and IL-2 therapy were given. On the other hand, treatment with anti-CD4 mAb alone had no effect on tumor growth. It was shown that the therapeutic action of combination therapy with anti-CD4 mAb and IL-2 was mediated by CD8+ T cells, because the therapeutic effect was completely ablated in mice depleted of CD8+ T cells with anti-CD8 mAb. Taken together these results suggest that, at a late stage of growth of an immunogenic tumor, depletion of CD4+ T cells can enhance the antitumor effect of IL-2 therapy by releasing CD8+-T-cell-mediated immunity from T-cell-mediated suppression.  相似文献   

11.
Neonatal infection of the mouse T lymphotropic virus (MTLV), a member of herpes viridae, causes various organ-specific autoimmune diseases, such as autoimmune gastritis, in selected strains of normal mice. The infection selectively depletes CD4+ T cells in the thymus and periphery for 2-3 wk from 1 wk after infection. Thymectomy 3 wk after neonatal MTLV infection enhances the autoimmune responses and produces autoimmune diseases at higher incidences and in a wider spectrum of organs than MTLV infection alone. On the other hand, inoculation of peripheral CD4+ cells from syngeneic noninfected adult mice prevents the autoimmune development. These autoimmune diseases can be adoptively transferred to syngeneic athymic nude mice by CD4+ T cells. The virus is not detected by bioassay in the organs/tissues damaged by the autoimmune responses. Furthermore, similar autoimmune diseases can be induced in normal mice by manipulating the neonatal thymus/T cells (e.g., by neonatal thymectomy) without virus infection. These results taken together indicate that neonatal MTLV infection elicits autoimmune disease by primarily affecting thymocytes/T cells, not self Ags. It may provoke or enhance thymic production of CD4+ pathogenic self-reactive T cells by altering the thymic clonal deletion mechanism, or reduce the production of CD4+ regulatory T cells controlling self-reactive T cells, or both. The possibility is discussed that other T cell-tropic viruses may cause autoimmunity in humans and animals by affecting the T cell immune system, not the self Ags to be targeted by the autoimmunity.  相似文献   

12.
The signals that trigger IL-4-independent IL-4 synthesis by conventional CD4(+) T cells are not yet defined. In this study, we show that coactivation with anti-CD4 mAb can stimulate single naive CD4(+) T cells to form IL-4-producing clones in the absence of APC and exogenous IL-4, independently of effects on proliferation. When single CD4(+) lymph node cells from C57BL/6 mice were cultured with immobilized anti-CD3epsilon mAb and IL-2, 65-85% formed clones over 12-14 days. Coimmobilization of mAb to CD4, CD11a, and/or CD28 increased the size of these clones but each exerted different effects on their cytokine profiles. Most clones produced IFN-gamma and/or IL-3 regardless of the coactivating mAb. However, whereas 0-6% of clones obtained with mAb to CD11a or CD28 produced IL-4, 10-40% of those coactivated with anti-CD4 mAb were IL-4 producers. A similar response was observed among CD4(+) cells from BALB/c mice. Most IL-4-producing clones were derived from CD4(+) cells of naive (CD44(low) or CD62L(high)) phenotype and the great majority coproduced IFN-gamma and IL-3. The effect of anti-CD4 mAb on IL-4 synthesis could be dissociated from effects on clone size since anti-CD4 and anti-CD11a mAb stimulated formation of clones of similar size which differed markedly in IL-4 production. Engagement of CD3 and CD4 in the presence of IL-2 is therefore sufficient to induce a substantial proportion of naive CD4(+) T cells to form IL-4-producing clones in the absence of other exogenous signals, including IL-4 itself.  相似文献   

13.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

14.
The class I MHC allele HLA-B27 is highly associated with the human spondyloarthropathies, but the basis for this association remains poorly understood. Transgenic rats with high expression of HLA-B27 develop a multisystem inflammatory disease that includes arthritis and colitis. To investigate whether CD8alphabeta T cells are needed in this disease, we depleted these cells in B27 transgenic rats before the onset of disease by adult thymectomy plus short-term anti-CD8alpha mAb treatment. This treatment induced profound, sustained depletion of CD8alphabeta T cells, but failed to suppress either colitis or arthritis. To address the role of CD8alpha(+)beta(-) cells, we studied four additional groups of B27 transgenic rats treated with: 1) continuous anti-CD8alpha mAb, 2) continuous isotype-matched control mAb, 3) the thymectomy/pulse anti-CD8alpha regimen, or 4) no treatment. Arthritis occurred in approximately 40% of each group, but was most significantly reduced in severity in the anti-CD8alpha-treated group. In addition to CD8alphabeta T cells, two sizeable CD8alpha(+)beta(-) non-T cell populations were also reduced by the anti-CD8alpha treatment: 1) NK cells, and 2) a CD4(+)CD8(+)CD11b/c(+)CD161a(+)CD172a(+) monocyte population that became expanded in diseased B27 transgenic rats. These data indicate that HLA-B27-retricted CD8(+) T cells are unlikely to serve as effector cells in the transgenic rat model of HLA-B27-associated disease, in opposition to a commonly invoked hypothesis concerning the role of B27 in the spondyloarthropathies. The data also suggest that one or more populations of CD8alpha(+)beta(-) non-T cells may play a role in the arthritis that occurs in these rats.  相似文献   

15.
C57BL/6 mice chronically infected with an avirulent strain (ME-49) of Toxoplasma gondii were used to study the mechanisms by which T lymphocytes and IFN-gamma prevent reactivation of latent infection. Infected animals were treated with mAb, either anti-CD8, anti-CD4, anti-CD4 plus anti-CD8, anti-IFN-gamma, or anti-CD4 plus anti-IFN-gamma and the mice followed for survival, histopathology, cyst numbers, and spleen cell cytokine responses. In agreement with previously published findings, treatment with anti-IFN-gamma antibodies fully reactivated the asymptomatic infection, inducing massive necrotic areas in the brain with the appearance of free tachyzoites and death of all animals within 2 wk. Mice treated with the combination of anti-CD4 plus anti-CD8 antibodies showed augmented pathology and mortality nearly identical to the anti-IFN-gamma- treated animals. In contrast, treatment with anti-CD4 or anti-CD8 mAb alone failed to result in significantly enhanced brain pathology or mortality. In additional experiments, full reactivation of infection was observed in mice treated with anti-CD4 plus anti-IFN-gamma indicating that CD4+ lymphocytes are not required for the pathology resulting from IFN-gamma neutralization. Cytokine measurements on parasite Ag-stimulated spleen cells from mAb-treated mice indicated that both CD4+ and CD8+ cells produce IFN-gamma whereas only CD4+ cells contribute to parasite Ag-induced IL-2 synthesis. Together, these results suggest that CD4+ and CD8+ lymphocytes act additively or synergistically to prevent reactivation of chronic T. gondii infection probably through the production of IFN-gamma.  相似文献   

16.
17.

Background

We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma.

Methodology and Principal Findings

To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision.

Conclusions and Significance

This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer.  相似文献   

18.
We established the phenotype of T splenocytes (Ts) from Igha/a BALB/c mice sensitized against B splenocytes from the Ighb/b CB20 congenic mice that induce Igh-1b (IgG2a of the Ighb haplotype) suppression. This was achieved by studying the action of anti-T cell subset mAb on the capacity of Ts to induce this chronic allotypic suppression in Igha/b (BALB/c x CB20)F1 mice. The Ts were treated with cytotoxic anti-mouse CD4 or anti-mouse CD8 rat mAb in vitro before their injection into the Igha/b newborns or in vivo after their injection into the Igha/b newborns. Exposure to either anti-CD8 or anti-CD4 mAb in vitro or in vivo leads to loss of the capacity of Ts to induce Igh-1b allotypic suppression. Mixing CD4+-cell-depleted Ts and CD8+-cell-depleted Ts preparations restored the capacity of the cells to induce Igh-1b suppression. Thus, both CD4+ CD8- Ts and CD4- CD8+ Ts are required for the induction of this allotypic suppression. Bone marrow cells and B splenocytes from Igh-1b-suppressed adult Igha/b mice were shown to be able to durably express Igh-1b when transferred into irradiated Igha/a BALB/c hosts whereas whole spleen cells from such donors failed to do it. Abrogation of Igh-1b suppression by in vivo anti-CD8 mAb treatment was achieved in adult Igha/b heterozygotes but with a lower efficiency than in adult Ighb/b homozygotes, all being chronically Igh-1b suppressed. The CD4- CD8+ cell population essential for maintaining this suppression is resistant to in vivo 600 rad irradiation and seems to be slightly inhibited by in vivo administration of free Igh-1b.  相似文献   

19.
Although CD4 cells are major mediators in cellular rejection of fetal pig pancreas (FPP) in the mouse, rejection still occurs in the absence of CD4 cells, albeit with delayed kinetics. CD4 cell-independent mechanisms of cellular rejection are poorly understood. To investigate the involvement of CD8 T cells in FPP rejection and their activation requirements, we used mice transgenic for anti-CD4 Ab; this is the most complete model of CD4 cell deficiency. We showed that in such mice FPP was infiltrated with CD8 cells starting from 2 wk posttransplantation and FPP was eventually rejected 8 wk posttransplantation. Ab depletion of CD8 cells greatly improved the survival of FPP and reduced cell infiltration at the graft site. This suggests that CD8 cells can mediate the rejection of porcine xenografts in the absence of CD4 cells. This CD8-mediated rejection of FPP is independent of their perforin-mediated lytic function, as graft survival was not affected in mice deficient in perforin. The production of IFN-gamma and IL-5 by the graft infiltrates indicates that CD8 cells may act through cytokine-mediated mechanisms. Remarkably, in the absence of CD4 cells, lymphocyte infiltration at the graft site was absent in mice transgenic for CTLA4Ig such that the islet grafts flourished beyond 24 wk. In contrast, rejection was little affected by CD40 ligand deficiency. Therefore, we show that CD8 cells are activated to mediate FPP rejection independent of perforin and that this CD4-independent activation of CD8 cells critically depends on B7/CD28 costimulation.  相似文献   

20.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号