首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carcinoembryonic Ag-related cellular adhesion molecule 1 (CEACAM1) represents a group of transmembrane protein isoforms that consist of variable numbers of extracellular Ig-like domains together with either a long cytoplasmic (cyt) tail containing two immunoreceptor tyrosine-based inhibitory motifs or a unique short cyt tail. Although CEACAM1 has been reported to be expressed on the surface of T lymphocytes upon activation, its roles in T cell regulation are controversial due to the lack of functional characterization of each individual CEACAM1 isoform. We thus cotransfected Jurkat T cells with CEACAM1 isoform-encoding constructs and an IL-2 promoter-bearing plasmid or a small interference RNA targeting src homology domain 2 containing phosphatase 1. In a luciferase reporter assay and through measurements of cytokine secretion (IL-2, IL-4, and IFN-gamma), CEACAM1 containing either a long or a short cyt tail inhibited or costimulated, respectively, TCR/CD3 complex plus CD28 mediated activation with the inhibitory functions of the long cyt tail dominating. The inhibitory function of CEACAM1, was dependent upon src homology domain 2 containing phosphatase 1 activity, required both tyrosine residues within the immunoreceptor tyrosine-based inhibitory motif domains of the cyt tail and was mediated through the mitogen-activated protein kinase pathway. CEACAM1-mediated inhibition could be functionally reconstituted by incubation of PBMC with either a CEACAM1-specific mAb or CEACAM1-Fc fusion protein in the presence of an allogeneic or mitogenic stimulus, respectively. These studies indicate that the long and short cyt tails of CEACAM1 serve as inhibitory and costimulatory receptors, respectively, in T cell regulation.  相似文献   

2.
Carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1), the primordial carcinoembryonic Ag gene family member, is a transmembrane cell adhesion molecule expressed in leukocytes, epithelia, and blood vessel endothelia in humans and rodents. As a result of differential splicing, CEACAM1 occurs as several isoforms, the two major ones being CEACAM1-L and CEACAM1-S, that have long (L) or short (S) cytoplasmic domains, respectively. The L:S expression ratios vary in different cells and tissues. In addition to CEACAM1, human but not rodent cells express GPI-linked CEACAM members (CEACAM5-CEACAM8). We compared the expression patterns of CEACAM1-L, CEACAM1-S, CEACAM6, and CEACAM8 in purified populations of neutrophilic granulocytes, B lymphocytes, and T lymphocytes from rats, mice, and humans. Human granulocytes expressed CEACAM1, CEACAM6, and CEACAM8, whereas human B lymphocytes and T lymphocytes expressed only CEACAM1 and CEACAM6. Whereas granulocytes, B cells, and T cells from mice and rats expressed both CEACAM1-L and CEACAM1-S in ratios of 2.2-2.9:1, CEACAM1-S expression was totally lacking in human granulocytes, B cells, and T cells. Human leukocytes only expressed the L isoforms of CEACAM1. This suggests that the GPI-linked CEACAM members have functionally replaced CEACAM1-S in human leukocytes. Support for the replacement hypothesis was obtained from experiments in which the extracellular signal-regulated kinases (Erk)1/2 were activated by anti-CEACAM Abs. Thus, Abs against CEACAM1 activated Erk1/2 in rat granulocytes, but not in human granulocytes. Erk1/2 in human granulocytes could, however, be activated by Abs against CEACAM8. We demonstrated that CEACAM1 and CEACAM8 are physically associated in human granulocytes. The CEACAM1/CEACAM8 complex in human cells might accordingly play a similar role as CEACAM1-L/CEACAM1-S dimers known to occur in rat cells.  相似文献   

3.
Dendritic cells (DC) comprise a key part of the innate immune system that, upon activation, profoundly influences the nature of the adaptive T cell response. In this study, we present evidence that signaling lymphocytic activation molecule (SLAM), a molecule first identified in activated T and B cells, is strongly up-regulated in DC activated through CD40, as well as in response to inflammatory stimuli, including polyinosinic polycytidylic acid and LPS. mRNA encoding both membrane-bound and soluble secreted isoforms of SLAM was detected in CD40 ligand-activated DC, comprising two of the four known SLAM isoforms. Expression of membrane-bound SLAM protein peaked at 12 h poststimulation with CD40 ligand, gradually returning to baseline levels after 6 days. SLAM up-regulation appears to be a direct result of the induction of DC maturation, as inflammatory cytokines released during this process do not affect SLAM expression. Functionally, engagement of SLAM enhances DC production of IL-12 and IL-8, while having no effect on production of IL-10. Because SLAM is involved in the activation of T cells, the expression of SLAM on DC may provide a bidirectional signaling mechanism in which interacting DC and T cells are simultaneously and synergistically activated to mount proinflammatory Th1 responses.  相似文献   

4.
Integrity of the dendritic cell (DC) actin cytoskeleton is essential for T cell priming, but the underlying mechanisms are poorly understood. We show that the DC F-actin network regulates the lateral mobility of intracellular cell adhesion molecule 1 (ICAM-1), but not MHCII. ICAM-1 mobility and clustering are regulated by maturation-induced changes in the expression and activation of moesin and α-actinin-1, which associate with actin filaments and the ICAM-1 cytoplasmic domain. Constrained ICAM-1 mobility is important for DC function, as DCs expressing a high-mobility ICAM-1 mutant lacking the cytoplasmic domain exhibit diminished antigen-dependent conjugate formation and T cell priming. These defects are associated with inefficient induction of leukocyte functional antigen 1 (LFA-1) affinity maturation, which is consistent with a model in which constrained ICAM-1 mobility opposes forces on LFA-1 exerted by the T cell cytoskeleton, whereas ICAM-1 clustering enhances valency and further promotes ligand-dependent LFA-1 activation. Our results reveal an important new mechanism through which the DC cytoskeleton regulates receptor activation at the immunological synapse.  相似文献   

5.
The long cytoplasmic tail (CT) isoforms of carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1) are expressed on activated human T cells and possess two ITIM motifs in the CT. These isoforms of CEACAM1 are inhibitory for T cell responses initiated by the TCR/CD3 complex with the inhibition dependent upon the ITIMs of CEACAM1 and Src homology 2 domain-containing phosphatase 1 (SHP-1). However, the mechanism by which this inhibition occurs in T cells is unknown. We demonstrate here that the Src family kinase, Lck, and the ability of CEACAM1 to bind homophilically are required for the ITIM phosphorylation of CEACAM1 that is a prerequisite for CEACAM1 association with SHP-1. We further show that CEACAM1 associates with and recruits SHP-1 to the TCR/CD3 complex leading to decreased phosphorylation of CD3-zeta and ZAP-70 and consequently decreased activation of the elements downstream of ZAP-70. This is physiologically relevant because extinction of SHP-1 expression or blockade of homophilic binding by CEACAM1 using a Fab that specifically recognizes the homophilic binding region of human CEACAM1 increases the cytolytic function initiated by the TCR/CD3 complex. These studies show that long CT isoforms of CEACAM1 orchestrate an inhibitory program that abrogates extremely proximal events downstream of the TCR/CD3 complex by focusing on the activation of ZAP-70.  相似文献   

6.
7.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

8.
We recently demonstrated that the respiratory syncytial virus (RSV) NS1 protein, an antagonist of host type I interferon (IFN-I) production and signaling, has a suppressive effect on the maturation of human dendritic cells (DC) that was only partly dependent on released IFN-I. Here we investigated whether NS1 affects the ability of DC to activate CD8+ and CD4+ T cells. Human DC were infected with RSV deletion mutants lacking the NS1 and/or NS2 genes and assayed for the ability to activate autologous T cells in vitro, which were analyzed by multi-color flow cytometry. Deletion of the NS1, but not NS2, protein resulted in three major effects: (i) an increased activation and proliferation of CD8+ T cells that express CD103, a tissue homing integrin that directs CD8+ T cells to mucosal epithelial cells of the respiratory tract and triggers cytolytic activity; (ii) an increased activation and proliferation of Th17 cells, which have recently been shown to have anti-viral effects and also indirectly attract neutrophils; and (iii) decreased activation of IL-4-producing CD4+ T cells--which are associated with enhanced RSV disease--and reduced proliferation of total CD4+ T cells. Except for total CD4+ T cell proliferation, none of the T cell effects appeared to be due to increased IFN-I signaling. In the infected DC, deletion of the NS1 and NS2 genes strongly up-regulated the expression of cytokines and other molecules involved in DC maturation. This was partly IFN-I-independent, and thus might account for the T cell effects. Taken together, these data demonstrate that the NS1 protein suppresses proliferation and activation of two of the protective cell populations (CD103+ CD8+ T cells and Th17 cells), and promotes proliferation and activation of Th2 cells that can enhance RSV disease.  相似文献   

9.
B lymphocyte stimulator (BLyS) is a well-known direct costimulator of adaptive immune cells, particularly B lineage cells. However, we have reported recently that BLyS is also able to activate monocytes. Other innate immune cells, such as dendritic cells (DCs), play a key role in the initiation of adaptive immune responses and the purpose of the current study was to assess whether there is a direct role for BLyS in modulating human DC functions. In this study, we show that BLyS induces DC activation and maturation. Thus, BLyS strongly induced up-regulation of surface costimulatory molecule expression and secretion of specific cytokines and chemokines in DCs. BLyS-stimulated DCs (BLyS-DCs) were also able to augment allogeneic CD4 T cell proliferation to a greater extent than control DCs. BLyS-DCs secreted elevated levels of the major Th1-polarizing cytokine, IL-12p70, and they promoted naive CD4 T cell differentiation into Th1 T cells. Regarding BLyS receptor expression, DCs primarily express cytoplasmic transmembrane activator and CAML interactor; however, low levels of cell surface transmembrane activator and CAML interactor are expressed as well. Collectively, our data suggest that BLyS may modulate adaptive immune cells indirectly by inducing DC maturation.  相似文献   

10.
The homophilic cell-cell adhesion receptor CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1, CD66a) acts as a regulator of contact-dependent cell survival, differentiation, and growth. It is involved in the control of proliferation in hematopoietic and epithelial cells and can act as a tumor suppressor. In this study, we identify DNA polymerase delta-interacting protein 38 (PDIP38) as a novel binding partner for CEACAM1-L and CEACAM1-S. We show that PDIP38 can occur in the nucleus, in the cytoplasm and at the plasma membrane in NBT-II, IEC18, RBE, and HeLa cells and that the distribution in NBT-II cells is influenced by the confluency of the cells. We also demonstrate that the interaction of CEACAM1 and PDIP38 is of functional importance in NBT-II cells, which co-express the long and the short CEACAM1 isoform. In subconfluent, proliferating NBT-II cells, perturbation of CEACAM1 by antibody clustering induces increased binding to PDIP38 and results in rapid recruitment of PDIP38 to the plasma membrane. The same treatment of confluent, quiescent NBT-II cells leads to a different response, i.e. translocation of PDIP38 to the nucleus. Together, our data show that PDIP38 can shuttle between the cytoplasmic and the nuclear compartments and that its subcellular localization is regulated by CEACAM1, implicating that PDIP38 may constitute a novel downstream target of CEACAM1 signaling.  相似文献   

11.
Signaling lymphocyte activation molecule (SLAM), a 70-kDa costimulatory molecule that mediates CD28-independent proliferation of T cells and IFN-gamma production, has been identified on human T cells, immature thymocytes, and a subset of B cells. We have found that SLAM is expressed on mature but not immature dendritic cells (DC). However, the SLAM-associated protein, is missing in DC. SLAM surface expression is strongly up-regulated by IL-1beta. Addition of IL-1beta to the DC maturation mixture also increases the stimulatory properties of DC. These findings provide a new marker for DC maturation and help to explain two areas of DC biology. First, SLAM is a receptor for the measles virus, previously shown to infect DC. Second, SLAM could possibly contribute to the enhanced immunostimulatory functions of DC that are observed following the addition of IL-1.  相似文献   

12.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

13.
We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.  相似文献   

14.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

15.
Dendritic cells (DC) represent a unique set of APCs that initiate immune responses through priming of naive T cells. Maturation of DC is a crucial step during Ag presentation and can be induced by triggering a broad spectrum of DC surface receptors. Although human DC express several receptors for the Fc portion of IgG which were described to play an important role in Ag internalization, little is known about the effects of IgG or immune complexes on DC maturation. In this study, we show that cross-linking of FcgammaR-type II (CD32) with immobilized IgG (imIgG) can induce maturation of human monocyte-derived DC via the NF-kappaB signaling pathway. IgG-mediated maturation was accompanied by a moderate increase of IL-10 secretion, whereas no IL-12 production was observed. Involvement of CD32 was further supported by experiments with the anti-CD32 mAb, which blocked IgG-triggered DC maturation and cytokine secretion significantly. Furthermore, DC cultivated in the presence of imIgG induced allogeneic T cell proliferation. Because this imIgG-induced maturation was considerably impaired in monocyte-derived DC from systemic lupus erythematosus patients, we suggest that DC, which matured in the presence of immune complexes, may contribute to prevention of pathological immune responses.  相似文献   

16.
The activation of dendritic cells (DC) leads to increased costimulatory activity (termed DC maturation) and, in some instances, production of immunomodulatory cytokines such as IL-12. Both innate and T cell-derived signals can promote DC activation but it is unclear to what extent the two classes of stimuli are interchangeable or regulate distinct aspects of DC function. In this study, we show that signals from newly activated CD4(+) T cells cannot initiate IL-12 synthesis although they can amplify secretion of bioactive IL-12 p70 by DC exposed to an appropriate innate stimulus. This occurs exclusively in cis and does not influence IL-12 synthesis by bystander DC that do not present Ag. In marked contrast, signals from newly activated CD4(+) T cells can induce an increase in DC costimulatory activity in the absence of any innate priming. This occurs both in cis and in trans, affecting all DC in the microenvironment, including those that do not bear specific Ag. Consistent with the latter, we show that newly activated CD4(+) T cells in vivo can deliver "help" in trans, effectively lowering the number of MHC/peptide complexes required for proliferation of third-party naive CD4(+) T cells recognizing Ag on bystander DC. These results demonstrate that DC maturation and cytokine production are regulated distinctly by innate stimuli vs signals from CD4(+) T cells and reveal a process of trans activation of DC without secretion of polarizing cytokines that takes place during T cell priming and may be involved in amplifying immune responses.  相似文献   

17.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

18.

Background

The cytosolic adaptor protein ADAP (adhesion and degranulation promoting adapter protein) is expressed by T cells, natural killer cells, myeloid cells and platelets. ADAP is involved in T-cell-receptor-mediated inside-out signaling, which leads to integrin activation, adhesion and reorganization of the actin cytoskeleton. However, little is known about the role of ADAP in myeloid cells. In the present study, we analyzed the function of ADAP in bone-marrow-derived dendritic cells (BMDCs) from ADAP-deficient mice.

Results

ADAP-deficient BMDCs showed almost normal levels of antigen uptake, adhesion, maturation, migration from the periphery to the draining lymph nodes, antigen-specific T-cell activation, and production of the proinflammatory cytokines IL-6 and TNF-??. Furthermore, we provide evidence that the activation of signaling pathways after lipopolysaccharide (LPS) stimulation are not affected by the loss of ADAP. In contrast, ADAP-deficient BMDCs showed defects in CD11c-mediated cellular responses, with significantly diminished production of IL-6, TNF-?? and IL-10. Actin polymerization was enhanced after CD11c integrin stimulation.

Conclusions

In summary, we propose that the adapter molecule ADAP is critical for selected CD11c integrin-mediated functions of dendritic cells.  相似文献   

19.
CD38, a nonlineage-restricted surface glycoprotein, is an ecto-enzyme (ADP ribosyl cyclase/cADPR hydrolase/EC 3.2.2.6) that regulates cytoplasmic Ca2+ and cell-cell interactions. The molecule also delivers trans-membrane signals, despite a structural ineptitude to the scope. To reconcile these issues in a unitarian model, we compared the effects of CD38 signaling in circulating and residential T lymphocytes, the latter represented by those colonizing the intestinal lamina propria. Results are as follows: 1) LP T cells express an enzymatically active form of CD38, characterized by a modified ratio between cyclase and hydrolase functions; 2) LP T cells do not mobilize Ca2+ upon CD38 ligation, as seen in PB T cells (this condition is due to a lack in activation of PLC- g, constantly observed in PB T lymphocytes); 3) The early steps of CD38 signaling involve activation of lck, syk, and LAT; 4) Late events include synthesis and release of IL-2, IL-4, IL-5, IL-10, IFN-g and GM-CSF; 5) The uniqueness of the CD38 pathway in LP T cells is not caused by impaired interactions with the CD31 ligand. The differences observed concern the signaling machinery that CD38 exploits for its own use and not the interplay with its ligand.  相似文献   

20.
We have identified a novel member of the calcium-dependent (C-type) lectin family. This molecule, designated DCIR (for dendritic cell (DC) immunoreceptor), is a type II membrane glycoprotein of 237 aa with a single carbohydrate recognition domain (CRD), closest in homology to those of the macrophage lectin and hepatic asialoglycoprotein receptors. The intracellular domain of DCIR contains a consensus immunoreceptor tyrosine-based inhibitory motif. A mouse cDNA, encoding a homologous protein has been identified. Northern blot analysis showed DCIR mRNA to be predominantly transcribed in hematopoietic tissues. The gene encoding human DCIR was localized to chromosome 12p13, in a region close to the NK gene complex. Unlike members of this complex, DCIR displays a typical lectin CRD rather than an NK cell type extracellular domain, and was expressed on DC, monocytes, macrophages, B lymphocytes, and granulocytes, but not detected on NK and T cells. DCIR was strongly expressed by DC derived from blood monocytes cultured with GM-CSF and IL-4. DCIR was mostly expressed by monocyte-related rather than Langerhans cell related DC obtained from CD34+ progenitor cells. Finally, DCIR expression was down-regulated by signals inducing DC maturation such as CD40 ligand, LPS, or TNF-alpha. Thus, DCIR is differentially expressed on DC depending on their origin and stage of maturation/activation. DCIR represents a novel surface molecule expressed by Ag presenting cells, and of potential importance in regulation of DC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号