首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We used underwater observation to determine diel habitat partitioning between bull charr, Salvelinus confluentus, and cutthroat trout, Oncorhynchus clarki, during fall and winter (0.1–8.3°C) in two Rocky Mountain streams that differed in habitat availability. The majority (>70%) of both species emerged from concealment cover at night, though bull charr exhibited a greater tendency for nocturnal behavior than cutthroat trout. Differences in day and night counts were most pronounced at temperatures <3°C, when very few fish of either species were observed in the water column during the day, but both species were common at night. Both species used concealment cover of large woody debris and boulder substrate crevices in deep pools during the day. At night, fish emerged from cover and habitat use shifted to shallow water with low cover. Microhabitat partitioning among species and size classes occurred at night, cutthroat trout moving into shallower, faster water that was farther from cover compared to bull charr. Smaller fish of both species occupied focal positions in slower, shallower water closer to the substrate than larger fish. Large, mixed-species aggregations also were common in beaver ponds both day and night. High variation in diel and site-specific winter habitat use suggests the need for caution in developing habitat suitability criteria for salmonids based solely on daytime observations or on observations from a few sites. Our results support the need to incorporate nocturnal habitat use and partitioning in studies of salmonid ecology.  相似文献   

2.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

3.
Ontogenetic diet shifts in juvenile fishes are sometimes associated with proportional changes to the feeding mechanism. In addition, many piscivorous teleosts transition from invertebrate-prey to fish-prey when the mouth attains a specific diameter. Allometric (disproportionate) growth of the jaws could accelerate a young fish’s ability to reach a critical gape diameter; alternately by opening the lower jaw to a greater degree, a fish might increase gape behaviorally. We investigated the ontogeny of feeding morphology and kinematics in an imperiled piscivore, the Colorado pikeminnow (Ptychocheilus lucius) in a size range of individuals across which a diet shift from invertebrate-prey to prey-fishes is known to occur. We predicted that: (1) the feeding apparatus of the fish would grow proportionally with the rest of the body (isometric growth), that (2) anatomical gape diameter at the known diet transition would be a similar gape diameter to that observed for other piscivorous juvenile fishes (15–20 mm) and (3) feeding kinematic variables would scale isometrically (that is, change in direct proportion to body length) as juvenile pikeminnow became larger. Furthermore, we also asked the question: if changes in feeding morphology and kinematics are present, do the changes in morphology appear to generate the observed changes in kinematics? For juvenile Colorado pikeminnow, the majority of the morphological variables associated with the skull and jaws scale isometrically (that is, proportionally), but seven of eight kinematic variables, including functional gape, scale with negative allometry (that is, they became disproportionately smaller in magnitude). In contrast with the overall trend of isometry, two key aspects of feeding morphology do change with size; the lower jaw of a young Colorado pikeminnow becomes longer (positive allometry), while the head becomes shallower (negative allometry). These findings do not support the hypothesis that morphological ontogenetic changes directly generate changes in feeding kinematics; in fact, allometric jaw growth would, a priori, be expected to generate a larger gape in older fish—which is the opposite of what was observed. We conclude that ontogenetic morphological changes produce a more streamlined cranium that may reduce drag during a rapid, anteriorly directed strike, while concomitant behavioral changes reduce the magnitude of jaw movements—behavioral changes that will facilitate a very rapid opening and closing of the jaws during the gape cycle. Thus, for juvenile pikeminnow, speed and stealth appear to be more important than mouth gape during prey capture.  相似文献   

4.
During the last decade multimetric indices (MMIs) have been greatly improved by the use of appropriate criteria to define reference conditions and by the use of statistical analysis to select a consistent set of metrics. Among the large number of MMIs developed to assess the ecological status of streams based on fish communities, the emphasis was mainly put on warmwater assemblages. When compared with warmwater fish assemblages, coldwater assemblages present depauperate faunas with a limited suit of traits. Thus, very often the number of metrics used to compute MMIs for coldwater streams is lower than for warmwaters. The objective of this study was to develop new metrics specific to European coldwater assemblages that integrate both the species traits and the body size of fish. Indeed, whereas the use of size or age classes has been highly advocated for developing MMIs, it remains largely underrepresented. Therefore, we used eight biological and ecological traits to characterize species and two size classes: small and large individuals. Among the 96 metrics tested, four were successfully related to environmental gradients and three displayed a significant response to anthropogenic pressures: the number of small rheophilous individuals, the number of small oxygen-intolerant individuals, and the number of small-habitat-intolerant individuals. These results demonstrate that metrics based on size classes could be used in the development of MMIs for coldwater streams and more generally for low-species rivers.  相似文献   

5.
The seasonal diel behaviour of age 1+ steelhead from Coast and Cascade Range streams in Oregon was examined in the field and in laboratory streams. During the summer, fish from both areas were active during the day in natural streams: they held position in the water column in moderate velocities and depths. At night, fish were in slower water, closer to the bottom above smaller substrates. In winter, diel behaviour differed between the two groups. Coastal fish exhibited behaviour similar to that observed in the summer. Cascade Range fish were not observed during the day, but were found at night, holding positions close to the bottom in slower water. In laboratory streams, fish from both regions were subjected to a decreasing temperature regime from 16°C to 2°C. Use of cover for concealment during the day was negatively correlated with water temperatures for both groups. However, the shelter-seeking response to declining water temperatures was significantly greater for Cascade fish than it was for coastal fish. Field and laboratory observations of diel behaviour support the hypothesis that steelhead from the two geographic regions have different adaptive strategies for winter conditions and that these differences, because they persisted even in laboratory conditions, are probably genetically based.  相似文献   

6.
Predation is an important selective force that influences animal color patterns. Some larval populations of the streamside salamander, Ambystoma barbouri, inhabit streams with fish predators. Other larval salamanders are found in shallow, ephemeral streams that are predator-free. Quantitative melanophore cell counts and estimates of percent body area pigmented indicated that larval coloration is strongly correlated with stream type. Larvae that coexist with fish tend to be lighter than larvae from streams that are Ashless and ephemeral. Two approaches demonstrated that lightly pigmented salamander larvae better match the common background in relatively permanent streams and are less conspicuous to fish than dark larvae. First, using a model based on the spectral sensitivity of the fish and reflectance properties of salamanders and natural stream backgrounds, we showed that light larvae are three times more cryptic than dark larvae on rocks. Second, lighter larvae had higher survival than darker salamanders on rocks in a predator- choice experiment. It is not clear why larvae in ephemeral streams are darker. Larvae in ephemeral streams should be active to feed and develop rapidly and reach sufficient size to metamorphose before seasonal drying. Several hypotheses may explain why larvae tend to be darker in ephemeral streams, such as increased thermoregulatory ability, better screening of ultraviolet radiation (in these shallower streams), or better background matching to terrestrial predators. Among populations where salamander larvae coexist with fish, there are differences in relative crypsis. Larvae from populations with fish and relatively high gene flow from ephemeral populations (where larvae are dark) tend to be darker (with more melanophores) and more conspicuous to predators than those from more genetically isolated populations, where larvae are lighter and more cryptic. These differences illustrate the role of gene flow as a constraint to adaptive evolution.  相似文献   

7.
We examined the taxonomic composition, abundance, and size of food items consumed by young-of-year, juvenile, and adult Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in order to determine the degree of diet overlap occurring in a relatively unproductive, high-elevation, mountain stream. Overall, we identified 49 Families of insects representing nine Orders, and 4 other Classes of organisms in the diets of the trout sampled and saw no evidence of piscivory. Each size class of fish consumed significantly different taxa and significantly different sizes of food items. However, despite these differences, the proportional similarity index (PSI) indicated that there was considerable overlap in taxa and sizes of organisms consumed by the three size classes. The greatest overlap occurred between young-of-year and juveniles, and between juveniles and adults. Both the relatively high proportion of small items in the adult diet and the slow growth rate of adults in these streams indicate that food may be limiting for adults and that intraspecific competition between adults and smaller size classes may be high.  相似文献   

8.
1. We used field surveys to compare the density and mesohabitat-scale distribution of the native coastrange sculpin ( Cottus aleuticus ) and the prickly sculpin ( C. asper ) in coastal rivers in north-western California, U.S.A., with and without an introduced piscivorous fish, the Sacramento pikeminnow, Ptychocheilus grandis . We also measured mortality of tethered prickly sculpin in a field experiment including river, habitat type (pools versus riffles) and cover as factors.
2. Average sculpin density ( C. aleuticus and C. asper combined) in two rivers without pikeminnow was 21 times higher than the average density in two rivers in a drainage with introduced pikeminnow. In riffles, differences in the density of sculpins among rivers could be linked to differences in cover. However, riffles in rivers without pikeminnow had an average sculpin density 77 times higher than rivers with pikeminnow, yet only nine times more cover. In pools, cover availability did not differ among rivers, but the density of sculpins in rivers without pikeminnow was 11 times higher than rivers with pikeminnow.
3. In the field experiment, mortality of tethered sculpin varied substantially among treatments and ANOVA indicated a significant River × Habitat × Cover interaction ( P  < 0.001). Overall, tethered prickly sculpin suffered 40% mortality over 24 h in rivers with pikeminnow and 2% mortality in rivers without pikeminnow, suggesting that predation is the mechanism by which the pikeminnow affects sculpins.
4. The apparent reduction in sculpin abundance by introduced pikeminnow has probably significantly altered food webs and nutrient transport processes, and increased the probability of extinction of coastrange and prickly sculpins in the Eel River drainage.  相似文献   

9.
Distinct fish assemblages were found at the mesohabitat scale in 14 streams in eastern Sabah, Malaysia. Sites were designated a priori as pool, run or riffle on the basis of physical habitat structure and properties. Principal components analysis of physical habitat data confirmed the validity of the a priori designation with a major axis of three correlated variables: water velocity, depth and substratum type. Canonical discriminant analysis on fish abundance and biomass data confirmed the existence of a specialized assemblage of fishes from riffle areas of all streams. Overall, pool and run assemblages were highly variable, dependent on stream size, but also variable between streams of the same size. Multiple regression of species richness, diversity, abundance and biomass data on principal components revealed significant but low correlations with measured habitat variables. Riffle habitats showed lower species richness and diversity but high abundance. The fish assemblage in riffles was dominated by balitorid species, specialized for fast-water conditions. Pool assemblages had the highest species diversity and were dominated by cyprinid species of a number of morphological and ecological guilds. Run assemblages were intermediate in assemblage characteristics between riffle and pool assemblages. Between-stream variation in assemblage composition was less than within-stream variation. Of 38 species collected, seven could be designated as riffle specialists, 18 as pool specialists and 13 as ubiquitous, although most of the latter showed size-specific habitat use with larger size classes found in slower, deeper water.  相似文献   

10.
Fish habitat preferences in large streams of southern France   总被引:6,自引:0,他引:6  
1. Relationships between fish and their habitat over whole geographic regions, which are evident from studies of many streams and species, can improve understanding of lotic communities and provide reliable management tools. Nevertheless, most habitat preference studies have been based on single sites, and confined to small streams and to game species.
2. Regional habitat preference models, based on local velocity, depth and roughness, were developed for twenty-four species and their size classes commonly found in large European streams. Fish surveys were conducted in six large streams in southern France over an 8-year period. To limit the influences of habitat variables other than those studied, we estimated fish preferences within each survey and averaged this information across surveys. Preferences were fitted with confidence intervals and their sensitivity to field uncertainty was evaluated.
3. Most species and size classes had significant preferences for local habitat conditions which were consistent across the region. Habitat preferences predominant in the region overall were not always observed at any one site, but habitat conditions preferred on average in the region were never actually avoided locally. These results support the use of regional preference models for fish and the development of similar models for other lotic groups whose sensitivity to local habitat conditions has been reported elsewhere.  相似文献   

11.
The critical swimming velocity (Ucrit) of four California stream fishes, hardhead, Mylopharodon conocephalus, hitch, Lavinia exilicauda, Sacramento pikeminnow, Ptychocheilus grandis, and Sacramento sucker, Catostomus occidentalis was measured at 10, 15, and 20°C. Hardhead, Sacramento sucker, and Sacramento pikeminnow swimming performances tended to be lowest at 10°C, higher at 15°C, and then decreased or remained constant at 20°C. Hitch swimming performance was lower at 10°C than at 20°C. There were no significant differences among species at 10 or 15°C, although pikeminnow and hitch were ca. 20% slower than hardhead or sucker. At 20°C hardhead, Sacramento sucker, and Sacramento pikeminnow had remarkably similar Ucrit but hitch were significantly (by 11%) faster. We recommend that water diversion approach velocities should not exceed 0.3ms–1 for hitch (20–30cm total length) and 0.4ms–1 for hardhead, Sacramento pikeminnow, and Sacramento sucker (20–30cm TL).  相似文献   

12.
The isotopic (δ13C and δ15N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ13C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ15N–enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources.  相似文献   

13.
Species with complex life cycles (e.g., aquatic larvae, terrestrial adults) are expected to shorten the time spent in the larval stage if mortality risks are high, a trade-off that lowers predation risk at the cost of reduced time for growth and thus smaller adult size. We tested these predictions by comparing the timing of and size at emergence for two relatively large and common invertebrate mesopredator species (Isoperla montana and Rhyacophila vibox) that inhabit small coastal streams, with and without predatory fish, in eastern Canada. Contrary to expectations based on predation risk–foraging trade-off theory, individuals of both invertebrate species tended to be larger rather than smaller in streams with fish than in fishless streams. The patterns were consistent, however, with the expected ecological effects of top predators on food webs, where fish lower abundances of invertebrate mesopredators, increasing resource availability and thus growth rates for the remaining individuals. We conclude that variation among streams in size at emergence is better explained by the impact of fish on resource availability than to behavioural or life history trade-offs occurring under risk of predation.  相似文献   

14.
Synopsis The hypothesis that Sacramento suckers, Catostomus occidentalis, compete with rainbow trout, Salmo gairdneri, for space in streams was examined by measuring microhabitat utilization of both species in three California streams. Two streams were similar in most respects except one contained only trout and one contained trout and a large population of suckers. The third stream, formed by the union of the first two, contained trout and a small population of suckers. The species overlapped in five of the six microhabitat variables measured: maximum depth, mean water column velocity, focal point velocity, surface water velocity, and substrate type. However, the species had strong vertical segregation; there was little overlap between species in focal point depth. Mean focal point velocities were also significantly different. Suckers roamed over and generally remained in contact with the bottom while trout held position in the water column. Microhabitat utilization by trout in the stream without suckers was similar to in the stream with a higher sucker density. Differences in microhabitat utilization by trout between the third stream and the other two was attributed to the larger size of the third stream. Both sucker and trout showed a similar within-species segregation of size classes - fish under 50 mm in length sought shallow water. Size-specific trends indicated ontogenic shifts in resource utilization which reduced overlap within species. These results suggest that competition for space between trout and suckers was not a major factor regulating microhabitat utilization of trout, although the possibility that larger suckers may displace small trout needs further study.  相似文献   

15.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

16.
The Andalusian toothcarp, Aphanius baeticus, is a critically endangered cyprinodontid species, with only nine known extant populations. Although not yet studied in the field, the distribution and abundance of Andalusian toothcarp are thought to be strongly influenced by interspecific interactions. We analysed the abundance and microhabitat use of Andalusian toothcarp in two water courses, one in which several other fish species occurred (sympatric site) and one hypersaline stream in which toothcarp was the only species present (allopatric site). Fish were sampled using plastic minnow traps and results were analysed separately for three size categories. Toothcarps were clearly more abundant in the allopatric population than in the sympatric one, though the difference was less apparent in the smallest size category. In coexistence with other species, toothcarp occupied shallower microhabitats, but in both sites in the absence of shelter fish selected deeper positions than in its absence. While in the sympatric site sheltered microhabitats were used predominately by small individuals, in the allopatric ones they were used by larger ones. Observed patterns strongly suggest that predation is the main mechanism involved in the differences in abundance and microhabitat use between sites. Our results confirm that the presence or absence of coexisting species is an important habitat feature for Andalusian toothcarp populations.  相似文献   

17.
1. Non‐native predators might inflict proportionally higher mortality on prey that have no previous experience of them, compared to species that have coexisted with the predator for some time. 2. We tested whether juvenile Chinook salmon (Oncorhynchus tshawytscha) were less able to recognise a non‐native than a native predator, by investigating behavioural responses to the chemical cues of the invasive smallmouth bass (Micropterus dolomieu) and the native northern pikeminnow (Ptychocheilus oregonensis) in both laboratory and field experiments. 3. Laboratory results demonstrated strong innate antipredator responses of individual juvenile Chinook salmon to northern pikeminnow; fish spent 70% of time motionless and exhibited 100% greater panic response than in controls. By contrast, antipredator responses to the chemical cues of smallmouth bass did not differ from controls. 4. These results were supported by similar differences in recognition of these predator odours by groups of juvenile Chinook salmon in fully natural conditions, though responses reflected a greater range of antipredator behaviours by individuals. In field trials, responses to northern pikeminnow odour resulted in increased flight or absence, reductions in swimming and foraging, and increased time spent near the substratum, compared to smallmouth bass odour. 5. Given that survival of juvenile fish is facilitated by predator recognition, our results support the hypothesis that naivety may be an important factor determining the effect of non‐native predators on prey populations. Efforts to manage the effect of native and non‐native predators may benefit by considering complex behavioural interactions, such as these at the individual and group levels.  相似文献   

18.
Migration of juvenile (0+) cyprinid fish from the Kiso River to experimental streams in the Aqua Restoration Research Center was demonstrated by the presence of parasites on fish. The experimental streams were located a minimum of 0.7 km from the main reach of the Kiso River, and they were connected via a tributary (Shinsakai River). The experimental streams were used as a spawning site and a nursery for juveniles, similar to the use of a temporary water body such as a paddy field. A digenean trematode (Centrocestus spp.) and the glochidia of unionid bivalves, both of which did not infect fish in the experimental streams or in the Shinsakai River, were used as marker parasites. Their presence indicated that the fish moved in the experimental streams from the Kiso River. For both fish species (Gnathopogon elongatus and Zacco platypus) assessed in this study, juveniles greater than 20–30 mm standard length could migrate from the Kiso River. This study showed that temporary waters are important as a nursery for juvenile fish, for whether or not a species spawns there. For the conservation of fish populations, it is important that temporary waters that are used as a nursery are connected with a permanent water area by a channel, through which not only adults, but also juvenile fish can migrate.  相似文献   

19.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

20.
Improving biological indicators to better assess the condition of streams   总被引:3,自引:0,他引:3  
Biological indicators of stream condition are in use by water resource managers worldwide. The State of Maryland and many other organizations that use Indices of Biotic Integrity (IBIs) must determine when and how to refine their IBIs so that better stream condition information is provided. With completion of the second statewide round in 2004, the Maryland Biological Stream Survey (MBSS) had collected data from 2500 stream sites, more than doubling the number of sites that were available for the original IBI development. This larger dataset provided an opportunity for the MBSS to address the following shortcomings in the original IBIs: (1) substantial disturbance apparent in some reference sites, (2) fish IBIs could not be applied to very small streams, (3) natural variability within IBIs (based on regions) resulted in some stream types (e.g., coldwater and blackwater streams) receiving lower IBI scores and (4) one IBI was not able to discriminate degradation as desired (i.e., Coastal Plain fish IBI). Therefore, development of new fish and benthic macroinvertebrate IBIs was undertaken to achieve the goals of: (1) increased confidence that the reference conditions are minimally disturbed, (2) including more natural variation (such as stream size) across the geographic regions and stream types of Maryland and (3) increased sensitivity of IBIs by using more classes (strata) and different metric combinations. New fish IBIs were developed for four geographical and stream type strata: Coastal Plain, Eastern Piedmont, warmwater Highlands and coldwater Highlands streams; new benthic macroinvertebrate IBIs were developed for three geographical strata: Coastal Plain, Eastern Piedmont and Highlands streams. The addition of one new fish IBI and one new benthic macroinvertebrate IBI partitioned natural variability into more homogeneous strata. At the same time, smaller streams (i.e., those draining catchments <300 ac), which constituted a greater proportion of streams (25%) sampled in Round Two (2000–2004) than Round One (1995–1997), because of the finer map scale, were included in the reference conditions used to develop the new IBIs. The resulting new IBIs have high classification efficiencies of 83–96% and are well balanced between Type I and Type II errors. By scoring coldwater streams, smaller streams and to some extent blackwater streams higher, the new IBIs improve on the original IBIs. Overall, the new IBIs provide better assessments of stream condition to support sound management decisions, without requiring substantial changes by cooperating stream assessment programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号