首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
We determined the roles of maximal systolic elastance (E(max)) and theoretical maximum flow ((max)) in the regulation of cardiac pumping function in early streptozotocin (STZ)-diabetic rats. Physically, E(max) can reflect the intrinsic contractility of the myocardium as an intact heart, and (max) has an inverse relation to the systolic resistance of the left ventricle. Rats given STZ 65 mg/kg i.v. (n = 17) were divided into two groups, 1 week and 4 weeks after induction of diabetes, and compared with untreated age-matched controls (n = 15). Left ventricular (LV) pressure and ascending aortic flow signals were recorded to calculate E(max) and (max), using the elastance-resistance model. After 1 or 4 weeks, STZ-diabetic animals show an increase in effective LV end-diastolic volume (V(eed)), no significant change in peak isovolumic pressure (P(iso)(max)), and a decline in effective arterial volume elastance (E(a)). The maximal systolic elastance E(max) is reduced from 751.5 +/- 23.1 mmHg/ml in controls to 514.1 +/- 22.4 mmHg/ml in 1- and 538.4 +/- 33.8 mmHg/ml in 4-week diabetic rats. Since E(max) equals P(iso)(max)/V(eed), an increase in V(eed) with unaltered P(iso)(max) may primarily act to diminish E(max) so that the intrinsic contractility of the diabetic heart is impaired. By contrast, STZ-diabetic rats have higher theoretical maximum flow (max) (40.9 +/- 2.8 ml/s in 1- and 44.5 +/- 3.8 ml/s in 4-week diabetic rats) than do controls (30.7 +/- 1.7 ml/s). There exists an inverse relation between (max) and E(a) when a linear regression of (max) on E(a) is performed over all animals studied (r = 0.65, p < 0.01). The enhanced (max) is indicative of the decline in systolic resistance of the diabetic rat heart. The opposing effects of enhanced (max) and reduced E(max) may negate each other, and then the cardiac pumping function of the early STZ-diabetic rat heart could be preserved before cardiac failure occurs.  相似文献   

2.
Sildenafil has been shown to be an effective treatment of pulmonary arterial hypertension and is believed to present with pulmonary selectivity. This study was designed to determine the site of action of sildenafil compared with inhaled nitric oxide (NO) and intravenous sodium nitroprusside (SNP), known as selective and nonselective pulmonary vasodilators, respectively. Inhaled NO (40 ppm), and maximum tolerated doses of intravenous SNP and sildenafil, (5 microg x kg(-1) x min(-1) and 0.1 mg x kg(-1) x h(-1)), respectively, were administered to eight dogs ventilated in hypoxia. Pulmonary vascular resistance (PVR) was evaluated by pulmonary arterial pressure (Ppa) minus left atrial pressure (Pla) vs. flow curves, and partitioned into arterial and venous segments by the occlusion method. Right ventricular hydraulic load was defined by pulmonary arterial characteristic impedance (Zc) and elastance (Ea) calculations. Right ventricular arterial coupling was estimated by the ratio of end-systolic elastance (Ees) to Ea. Decreasing the inspired oxygen fraction from 0.4 to 0.1 increased Ppa - Pla at a standardized flow of 3 l x min(-1) x m(-2) from 6 +/- 1 to 18 +/- 1 mmHg (mean +/- SE). Ppa - Pla was decreased to 9 +/- 1 by inhaled NO, 14 +/- 1 by SNP, and 14 +/- 1 mmHg by sildenafil. The partition of PVR, Zc, Ea, and Ees/Ea was not affected by the three interventions. Inhaled NO did not affect systemic arterial pressure, which was similarly decreased by sildenafil and SNP, from 115 +/- 4 to 101 +/- 4 and 98 +/- 5 mmHg, respectively. We conclude that inhaled NO inhibits hypoxic pulmonary vasoconstriction more effectively than sildenafil or SNP, and sildenafil shows no more selectivity for the pulmonary circulation than SNP.  相似文献   

3.
Effective arterial elastance (E(a)), defined as the ratio of left ventricular (LV) end-systolic pressure and stroke volume, lumps the steady and pulsatile components of the arterial load in a concise way. Combined with E(max), the slope of the LV end-systolic pressure-volume relation, E(a)/E(max) has been used to assess heart-arterial coupling. A mathematical heart-arterial interaction model was used to study the effects of changes in peripheral resistance (R; 0.6-1.8 mmHg x ml(-1) x s) and total arterial compliance (C; 0.5-2.0 ml/mmHg) covering the human pathophysiological range. E(a), E(a)/E(max,) LV stroke work, and hydraulic power were calculated for all conditions. Multiple-linear regression analysis revealed a linear relation between E(a), R/T (where T is cycle length), and 1/C: E(a) = -0.13 + 1.02R/T + 0.31/C, indicating that R/T contributes about three times more to E(a) than arterial stiffness (1/C). It is demonstrated that different pathophysiological combinations of R and C may lead to the same E(a) and E(a)/E(max) but can result in differences of 10% in stroke work and 50% in maximal power.  相似文献   

4.
The respective contribution of systemic vascular resistance (R) and total arterial compliance (C) to the arterial load remains to be established in humans. Effective arterial elastance (Ea), i.e., the left ventricular end-systolic pressure (LVESP)-over-stroke volume ratio, is a reliable estimate of arterial load. It is widely accepted that Ea mainly relates to mean aortic pressure (MAP) and thus to the R-to-T ratio (R/T ratio), where T is cycle length. We tested the contribution of R/T and 1/C to Ea in 20 normotensive and 46 hypertensive subjects (MAP range: 84-160 mmHg). The multilinear model applied (Ea = 1.00R/T + 0.42/C - 0.04; r2 = 0.97). The sensitivity of Ea to a change in R/T was 2.5 times higher than to a similar change in 1/C in both normotensive and hypertensive adults. The LVESP was more strongly related to systolic aortic pressure (SAP; r2 = 0.94) than to MAP (r2 = 0.83), and LVESP matched 90% SAP (bias = 0 +/- 5mmHg). An alternative model of Ea is proposed, in which Ea is proportional to the heart rate x SAP product-over-cardiac index ratio whatever the MAP.  相似文献   

5.
Dendroaspis natriuretic peptide (DNP) is a recently discovered peptide with structural similarity to known natriuretic peptides. DNP has been shown to possess potent renal actions. Our objectives were to define the acute hemodynamic actions of DNP in normal anesthetized dogs and the acute effects of DNP on left ventricular (LV) function in conscious chronically instrumented dogs. In anesthetized dogs, DNP, but not placebo, decreased mean arterial pressure (141 +/- 6 to 109 +/- 7 mmHg, P < 0.05) and pulmonary capillary wedge pressure (5.8 +/- 0.3 to 3.4 +/- 0.2 mmHg, P < 0.05). Cardiac output decreased and systemic vascular resistance increased with DNP and placebo. DNP-like immunoreactivity and guanosine 3',5'-cyclic monophosphate concentration increased without changes in other natriuretic peptides. In conscious dogs, DNP decreased LV end-systolic pressure (120 +/- 7 to 102 +/- 6 mmHg, P < 0.05) and volume (32 +/- 6 to 28 +/- 6 ml, P < 0.05) and LV end-diastolic volume (38 +/- 5 to 31 +/- 4 ml, P < 0.05) but not arterial elastance. LV end-systolic elastance increased (6.1 +/- 0.7 to 7.4 +/- 0.6 mmHg/ml, P < 0.05), and Tau decreased (31 +/- 2 to 27 +/- 1 ms, P < 0.05). The effects on hemodynamics, LV function, and second messenger generation suggest synthetic DNP may have a role as a cardiac unloading and lusitropic peptide.  相似文献   

6.
Global assessment of both cardiac and arterial function is important for a meaningful interpretation of pathophysiological changes in animal models of cardiovascular disease. We simultaneously acquired left ventricular (LV) and aortic pressure and LV volume (V(LV)) in 17 open-chest anesthetized mice (26.7 +/- 3.2g) during steady-state (BL) and caval vein occlusion (VCO) using a 1.4-Fr dual-pressure conductance catheter and in a subgroup of eight animals during aortic occlusion (AOO). Aortic flow was obtained from numerical differentiation of V(LV). AOO increased input impedance (Z(in)) for the first two harmonics, increased characteristic impedance (0.025 +/- 0.007 to 0.040 +/- 0.011 mmHg x microl(-1) x s, P < 0.05), and shifted the minimum in Z(in) from the third to the sixth harmonic. For all conditions, the Z(in) could be well represented by a four-element windkessel model. The augmentation index increased from 116.7 +/- 7.8% to 145.9 +/- 19.5% (P < 0.01) as well as estimated pulse-wave velocity (3.50 +/- 0.94 to 5.95 +/- 1.62 m/s, P < 0.05) and arterial elastance (E(a), 4.46 +/- 1.62 to 6.02 +/- 1.43 mmHg/microl, P < 0.01). AOO altered the maximal slope (E(max), 3.23 +/- 1.02 to 5.53 +/- 1.53 mmHg/microl, P < 0.05) and intercept (-19.9 +/- 8.6 to 1.62 +/- 13.51 microl, P < 0.01) of the end-systolic pressure-volume relation but not E(a)/E(max) (1.44 +/- 0.43 to 1.21 +/- 0.37, not significant). We conclude that simultaneous acquisition of Z(in) and arterial function parameters in the mouse, based solely on conductance catheter measurements, is feasible. We obtained an anticipated response of Z(in) and arterial function parameters following VCO and AOO, demonstrating the sensitivity of the measuring technique to induced physiological alterations in murine hemodynamics.  相似文献   

7.
The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance (Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/dtmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (tau). LV arterial coupling, quantified as the ratio of end-systolic elastance (Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 +/- 0.09 to 0.61 +/- 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and tau values and a further augmented dV/dtmax. Ees/Ea improved, and mechanical efficiency further increased from 0.61 +/- 0.07 to 0.67 +/- 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.  相似文献   

8.
Assessment of right ventricular (RV) contractility from end-systolic pressure-volume relationships (ESPVR) is difficult due to problems in measuring RV instantaneous volume and to effects of changes in RV preload or afterload. We therefore investigated in anesthetized dogs whether RV ESPVR and contractility can be determined without measuring RV volume and without changing RV preload or afterload. The maximal RV pressure of isovolumic beats (P(max)) was predicted from isovolumic portions of RV pressure during ejecting beats and compared with P(max) measured during the first beat after pulmonary artery clamping. In RV pressure-volume loops obtained from RV pressure and integrated pulmonary arterial flow, end-systolic elastance (E(es)) was assessed as the slope of P(max)-derived ESPVR, pulmonary artery effective elastance (E(a)) as the slope of end-diastolic to end-systolic relation, and coupling efficiency as the E(es)-to-E(a) ratio (E(es)/E(a)). Predicted P(max) correlated with observed P(max) (r = 0.98 +/- 0.02). Dobutamine increased E(es) from 1.07 to 2.00 mmHg/ml and E(es)/E(a) from 1.64 to 2.49, and propranolol decreased E(es)/E(a) from 1.64 to 0.91 (all P < 0.05). After adrenergic blockade, preload reduction did not affect E(es), whereas hypoxia and arterial constriction markedly increased E(a) and somewhat increased E(es) due to the Anrep effect. Low preload did not affect E(es)/E(a) and high afterload decreased E(es)/E(a). In conclusion, in the right ventricle 1) P(max) can be calculated from normal beats, 2) P(max) can be used to determine ESPVR without change in load, and 3) P(max)-derived ESPVR can be used to assess ventricular contractility and ventricular-arterial coupling efficiency.  相似文献   

9.
The coupling between arterial elastance (E(A); net afterload) and left ventricular elastance (E(LV); pump performance), known as E(A)/E(LV), is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in E(LV) versus E(A). This normal exercise-induced reduction in E(A)/E(LV) decreases with advancing age. We hypothesized that sodium nitroprusside (SNP) can acutely ameliorate the age-associated deficits in E(A)/E(LV). At rest and during graded exercise to exhaustion, E(A) was characterized as end-systolic pressure/stroke volume and E(LV) as end-systolic pressure/end-systolic volume. Resting E(A)/E(LV) did not differ between old (70 ± 8 yr, n = 15) and young (30 ± 5 yr, n = 17) subjects because of a tandem increase in E(A) and E(LV) in older subjects. During peak exercise, a blunted increase in E(LV) in old (7.8 ± 3.1 mmHg/ml) versus young (11.4 ± 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in E(A)/E(LV) in old (0.25 ± 0.11) versus young (0.16 ± 0.05) subjects. SNP administration to older subjects lowered resting E(A)/E(LV) by 31% via a reduction in E(A) (10%) and an increase in E(LV) (47%) and lowered peak exercise E(A)/E(LV) (36%) via an increase in E(LV) (68%) without a change in E(A). Importantly, SNP attenuated the age-associated deficits in E(A)/E(LV) and E(LV) during exercise, and at peak exercise E(A)/E(LV) in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in E(A)/E(LV), E(A), and E(LV), in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction.  相似文献   

10.
Frequency potentiation of contractile function is a major mechanism of the increase in myocardial performance during exercise. In heart failure (HF), this positive force-frequency relation is impaired, and the abnormal left ventricular (LV)-arterial coupling is exacerbated by tachycardia. A myofilament Ca(2+) sensitizer, levosimendan, has been shown to improve exercise tolerance in HF. This may be due to its beneficial actions on the force-frequency relation and LV-arterial coupling (end-systolic elastance/arterial elastance, E(ES)/E(A)). We assessed the effects of therapeutic doses of levosimendan on the force-frequency relation and E(ES)/E(A) in nine conscious dogs after pacing-induced HF using pressure-volume analysis. Before HF, pacing tachycardia increased E(ES), shortened τ, and did not impair E(ES)/E(A) and mechanical efficiency (stroke work/pressure-volume area, SW/PVA). In contrast, after HF, pacing at 140, 160, 180, and 200 beat/min (bpm) produced smaller a increase of E(ES) or less shortening of τ, whereas E(ES)/E(A) (from 0.56 at baseline to 0.42 at 200 bpm) and SW/PVA (from 0.52 at baseline to 0.43 at 200 bpm) progressively decreased. With levosimendan, basal E(ES) increased 27% (6.2 mmHg/ml), τ decreased 11% (40.8 ms), E(ES)/E(A) increased 34% (0.75), and SW/PVA improved by 15% (0.60). During tachycardia, E(ES) further increased by 23%, 37%, 68%, and 89%; τ decreased by 9%, 12%, 15%, and 17%; and E(ES)/E(A) was augmented by 11%, 16%, 31%, and 33%, incrementally, with pacing rate. SW/PVA was improved (0.61 to 0.64). In conclusion, in HF, treatment with levosimendan restores the normal positive LV systolic and diastolic force-frequency relation and prevents tachycardia-induced adverse effect on LV-arterial coupling and mechanical efficiency.  相似文献   

11.
Exaggerated inspiratory swings in intrathoracic pressure have been postulated to increase left ventricular (LV) afterload. These predictions are based on measurements of LV afterload by use of esophageal or lateral pleural pressure. Using direct measurements of pericardial pressure, we reexamined respiratory changes in LV afterload. In 11 anesthetized vagotomized dogs, we measured arterial pressure, LV end-systolic (ES) and end-diastolic transmural (TM) pressures, stroke volume (SV), diastolic left anterior descending blood flow (CBF-D), and coronary resistance. Dogs were studied before and while breathing against an inspiratory threshold load of -20 to -25 cmH2O compared with end expiration. Relative to end expiration, SV and LVES TM pressures decreased during inspiration and increased during early expiration, effects exaggerated during inspiratory loading. In all cases, LV afterload (LVES TM pressure) changed in parallel with SV. LV end-diastolic TM pressure did not change. CBF-D paralleled arterial pressure, and there were no changes in coronary resistance. In two dogs, regional LVES segment length paralleled calculated changes in LVES TM pressure. We conclude that 1) LV afterload decreases during early inspiration and increases during early expiration, changes secondary to those in SV; 2) changes in CBF-D are secondary to changes in perfusion pressure during the respiratory cycle; and 3) the use of esophageal or lateral pleural pressure to estimate LV surface pressure overestimates changes in LV TM pressures during respiration.  相似文献   

12.
It has been suggested that the shape of the normalized time-varying elastance curve [E(n)(t(n))] is conserved in different cardiac pathologies. We hypothesize, however, that the E(n)(t(n)) differs quantitatively after myocardial infarction (MI). Sprague-Dawley rats (n = 9) were anesthetized, and the left anterior descending coronary artery was ligated to provoke the MI. A sham-operated control group (CTRL) (n = 10) was treated without the MI. Two months later, a conductance catheter was inserted into the left ventricle (LV). The LV pressure and volume were measured and the E(n)(t(n)) derived. Slopes of E(n)(t(n)) during the preejection period (alpha(PEP)), ejection period (alpha(EP)), and their ratio (beta = alpha(EP)/alpha(PEP)) were calculated, together with the characteristic decay time during isovolumic relaxation (tau) and the normalized elastance at end diastole (E(min)(n)). MI provoked significant LV chamber dilatation, thus a loss in cardiac output (-33%), ejection fraction (-40%), and stroke volume (-30%) (P < 0.05). Also, it caused significant calcium increase (17-fold), fibrosis (2-fold), and LV hypertrophy. End-systolic elastance dropped from 0.66 +/- 0.31 mmHg/microl (CTRL) to 0.34 +/- 0.11 mmHg/microl (MI) (P < 0.05). Normalized elastance was significantly reduced in the MI group during the preejection, ejection, and diastolic periods (P < 0.05). The slope of E(n)(t(n)) during the alpha(PEP) and beta were significantly altered after MI (P < 0.05). Furthermore, tau and end-diastolic E(min)(n) were both significantly augmented in the MI group. We conclude that the E(n)(t(n)) differs quantitatively in all phases of the heart cycle, between normal and hearts post-MI. This should be considered when utilizing the single-beat concept.  相似文献   

13.
Myocardial actions of the vasodilator peptide adrenomedullin (ADM) in the intact animal are unknown. Negative and positive inotropic actions have been reported in ex vivo experiments. Myocardial and load-altering actions of ADM in dogs before and after development of heart failure were studied. With controlled heart rate (atrial pacing) and after beta-blockade, ADM was administered to five normal dogs in doses of 20 ng. kg(-1). min(-1) iv, 100 ng. kg(-1). min(-1) iv, and 200 ng. kg(-1). min(-1) into the left ventricle (LV). LV peak systolic pressure and end-systolic volume decreased with each dose of ADM. End-systolic pressure decreased with the two higher doses. At the highest dose, arterial elastance and the time constant of LV isovolumic relaxation (tau) decreased, and LV end-systolic elastance (E(es)) increased. LV end-diastolic pressure and volume were unchanged. In five additional normal dogs receiving only the highest dose of ADM (200 ng. kg(-1). min(-1) intra-LV), to control for increased heart rate and sympathetic activation observed with the cumulative infusion, ADM produced arterial vasodilation but no change in E(es) or tau. In four dogs with pacing-induced heart failure, ADM (200 ng. kg(-1). min(-1) intra-LV) was without effect on tau, E(es), and systolic or diastolic pressure and volume. In vivo, ADM appears to be a selective arterial dilator without inotropic or lusitropic effects. The vasodilatory actions are attenuated in heart failure.  相似文献   

14.
Short-term hibernating myocardium is characterized by reduced contractile function during persistent moderate ischemia, the recovery of metabolic parameters, and the absence of necrosis. To study the afterload dependence of regional wall excursion in short-term hibernating myocardium, in 11 enflurane-anesthetized swine the left anterior descending coronary artery was cannulated and hypoperfused for 90 min to reduce anterior systolic wall thickening (WT, sonomicrometry) by 60%. Under control conditions, at 5 and 90 min ischemia the descending thoracic aorta was acutely constricted to increase left ventricular (LV) pressure by 30 mmHg. Under control conditions, increased LV pressure resulted in decreased WT [i.e., a negative slope of the relationship between WT and LV end-systolic pressure: -11.2 +/- 4.2 (SD) microm/mmHg]. This slope was further significantly decreased at 5 min ischemia (-26.5 +/- 8.8 microm/mmHg) but returned toward control values in short-term hibernating myocardium at 90 min ischemia (-17.2 +/- 6.6 microm/mmHg). At 30 min reperfusion, the slope was once more significantly decreased (-27.8 +/- 8.1 microm/mmHg). In conclusion, WT in short-term hibernating myocardium is less afterload dependent than in acutely ischemic and reperfused myocardium.  相似文献   

15.
Respiratory distress syndrome (RDS) causes pulmonary hypertension. It is often suggested that this increased afterload for the right ventricle (RV) might lead to cardiac dysfunction. To examine this, we studied biventricular function in an experimental model. RDS was induced by lung lavages in seven newborn lambs. Five additional lambs served as controls. Cardiac function was quantified by indexes derived from end-systolic pressure-volume relations obtained by pressure-conductance catheters. After lung lavages, a twofold increase of mean pulmonary arterial pressure (from 15 to 34 mmHg) was obtained and lasted for the full 4-h study period. Stroke volume was maintained (5.2 +/- 0.6 ml at baseline and 6.1 +/- 1.4 ml at 4 h of RDS), while RV end-diastolic volume showed only a slight increase (from 6.5 +/- 2.3 ml at baseline to 7.7 +/- 1.3 ml at 4 h RDS). RV systolic function improved significantly, as indicated by a leftward shift and increased slope of the end-systolic pressure-volume relation. Left ventricular systolic function showed no changes. In control animals, pulmonary arterial pressure did not increase and right and left ventricular systolic function remained unaffected. In the face of increased RV afterload, the newborn heart is able to maintain cardiac output, primarily by improving systolic RV function through homeometric autoregulation.  相似文献   

16.
Acute elevation of circulating lipids, such as the postprandial state, contributes to increased cardiovascular risk. However, the effect of acutely elevated triglycerides on arterial and left ventricular function is not completely understood. We aimed to assess whether an acute increase in triglycerides affects ventricular-vascular interaction. Fifteen healthy men (age, 49 ± 8 yr) underwent blinded, randomized infusion of saline and intravenous fat emulsion to acutely raise plasma triglycerides. All subjects underwent both randomization trials, in random order on two separate days. Ventricular-vascular interaction measures were recorded by tonometry (central blood pressure) and echocardiography (left ventricular volumes, strain, and strain rate) at baseline and after 1 h infusion. Net ventricular-vascular interaction was defined by the effective arterial elastance (E(A))-to-left ventricular end-systolic elastance (E(LV)) ratio (E(A)/E(LV)). When compared with saline, the infusion of intravenous fat emulsion increased triglycerides and free fatty acids (ΔP < 0.001 for both) and improved left ventricular contractility (ΔE(LV), end-systolic volume and strain rate; P < 0.05 for all). However, arterial function was unchanged (ΔE(A), brachial and central blood pressure; P > 0.05 for all). Overall, E(A)/E(LV) was decreased by an infusion of intravenous fat emulsion (P = 0.004) but not saline (P > 0.05, P = 0.001 for Δ between trials). We conclude that intravenous fat emulsion and acute elevation of blood lipids (including triglycerides and free fatty acids) alter ventricular-vascular interaction by increasing left ventricular contractility without affecting arterial load. These findings may have implications for cardiovascular responses to parenteral nutrition.  相似文献   

17.
18.
We previously found the frequency distribution of the left ventricular (LV) effective afterload elastance (E(a)) of arrhythmic beats to be nonnormal or non-Gaussian in contrast to the normal distribution of the LV end-systolic elastance (E(max)) in canine in situ LVs during electrically induced atrial fibrillation (AF). These two mechanical variables determine the total mechanical energy [systolic pressure-volume area (PVA)] generated by LV contraction when the LV end-diastolic volume is given on a per-beat basis. PVA and E(max) are the two key determinants of the LV O(2) consumption per beat. In the present study, we analyzed the frequency distribution of PVA during AF by its chi(2), significance level, skewness, and kurtosis and compared them with those of other major cardiodynamic variables including E(a) and E(max). We assumed the volume intercept (V(0)) of the end-systolic pressure-volume relation needed for E(max) determination to be stable during arrhythmia. We found that PVA distributed much more normally than E(a) and slightly more so than E(max) during AF. We compared the chi(2), significance level, skewness, and kurtosis of all the complex terms of the PVA formula. We found that the complexity of the PVA formula attenuated the effect of the considerably nonnormal distribution of E(a) on the distribution of PVA along the central limit theorem. We conclude that mean (SD) of PVA can reliably characterize the distribution of PVA of arrhythmic beats during AF, at least in canine hearts.  相似文献   

19.
To test the hypothesis that alterations in left ventricular (LV) mechanoenergetics and the LV inotropic response to afterload manifest early in the evolution of heart failure, we examined six anesthetized dogs instrumented with LV micromanometers, piezoelectric crystals, and coronary sinus catheters before and after 24 h of rapid ventricular pacing (RVP). After autonomic blockade, the end-systolic pressure-volume relation (ESPVR), myocardial O(2) consumption (MVO(2)), and LV pressure-volume area (PVA) were defined at several different afterloads produced by graded infusions of phenylephrine. Short-term RVP resulted in reduced preload with proportionate reductions in stroke work and the maximum first derivative of LV pressure but with no significant reduction in baseline LV contractile state. In response to increased afterload, the baseline ESPVR shifted to the left with maintained end-systolic elastance (E(es)). In contrast, after short-term RVP, in response to comparable increases in afterload, the ESPVR displayed reduced E(es) (P < 0.05) and significantly less leftward shift compared with control (P < 0.05). Compared with the control MVO(2)-PVA relation, short-term RVP significantly increased the MVO(2) intercept (P < 0.05) with no change in slope. These results indicate that short-term RVP produces attenuation of afterload-induced enhancement of LV performance and increases energy consumption for nonmechanical processes with maintenance of contractile efficiency, suggesting that early in the development of tachycardia heart failure, there is blunting of length-dependent activation and increased O(2) requirements for excitation-contraction coupling, basal metabolism, or both. Rather than being adaptive mechanisms, these abnormalities may be primary defects involved in the progression of the heart failure phenotype.  相似文献   

20.
Prolonged breath hold (BH) represents a valid model for studying the cardiac adaptation to acute hypoxemia in humans. Cardiac magnetic resonance (CMR) allows a three-dimensional, high-resolution, noninvasive, and nonionizing anatomical and functional evaluation of the heart. The aim of the study was to assess the adaptation of the cardiovascular system to prolonged BH in air. Ten male volunteer diving athletes (age 30 +/- 6 yr) were studied during maximal BH duration with CMR. Four epochs were studied: I, rest; II and III, intermediate BH; and IV, peak BH. Oxygen saturation (So(2)), heart rate (HR), blood pressure (BP), systemic vascular resistance (VR), end-diastolic (EDV) and end-systolic volumes (ESV), stroke volume (SV), cardiac output (CO), ejection fraction (EF), maximal elastance index (EL), systolic wall thickening (SWT), and end-systolic wall stress (ESWS) of the left ventricle (LV) were measured in all four BH epochs. Average BH duration was 3.7 +/- 0.3 min. So(2) was reduced (I: 97 +/- 0.2%, range 96-98%, vs. IV: 84 +/- 2.0%, range 76-92%; P < 0.00001). BP, EDV, ESV, SV, CO, and ESWS linearly increased from epochs I to IV, whereas EF, EL, and SWT showed an opposite behavior, decreasing from resting to epoch IV (all trends are P < 0.01). During prolonged BH in air, a marked enlargement of the LV chamber occurs in healthy diving athletes. This response to acute hypoxemia allows SV,CO, and arterial pressure to be maintained despite the severe reduction in LV contractile function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号