首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During the last 30 years, there have been marked declines in the populations of many British songbirds breeding on farmland, while two of their main predators, sparrowhawk (Accipiter nisus) and magpie (Pica pica), have spread back into areas from which they had disappeared. The causes of the songbird declines remain unclear but given the coincidence in timing, it might appear that increased predation could be responsible. Although many studies have failed to find links between changes in the populations of breeding songbirds and mortality from avian predators, previous work has, with few exceptions, involved only short-term studies on small spatial scales. Here we use large-scale, long-term data from a national bird census scheme to examine whether magpies and sparrowhawks could have depressed the rates of year-to-year population change in 23 songbird species. Our results indicate that magpies and sparrowhawks are unlikely to have caused the songbird declines because patterns of year-to-year population change did not differ between sites with and without these predators.  相似文献   

2.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

3.
We studied factors that affect prey selection by a generalist predator that opportunistically attacks prey species, and the associated inter- and intra-specific responses of prey to this type of predation. Our model system was a guild of ground-foraging birds that are preyed upon by magpies (Pica pica) during the breeding season. We found that magpies attacked up to 12 species during three consecutive breeding seasons. The overall capture success was estimated to be 4.9%. Magpies tended to attack from the air, targeting solitary prey, either on the ground or flying. Inter-specific prey responses to the risk of magpie predation included a reduction in the mean number of species occupying a foraging patch when magpies were present and a decrease in the distance between heterospecific neighbours. Intra-specific responses to magpie predation varied between species that were subject to different attack rates. Preferentially attacked prey enhanced their risk responses (increase in scanning time and scanning rate in the presence of magpies) relative to those species attacked in proportion to their abundance (increase only in scanning rate with magpies). Species attacked infrequently, relative to their abundance, showed no antipredator response. The probability of being attacked, rather than mortality rate, appears to be the factor to which prey species respond.  相似文献   

4.
Avian assemblage structure and domestic cat densities in urban environments   总被引:2,自引:1,他引:1  
While there is intense debate regarding the impact of domestic cat populations on wildlife, its resolution is hindered by the lack of quite basic information. Domestic cats are generalist and obligate predators that receive supplementary food, and their population density reflects that of humans more than the density of their prey. In such a predator–prey system there is the potential for cat populations to have negative impacts on avian assemblages, which may be indicated by negative correlations between cat density and avian species richness and density. Here we report on the nature of such correlations across urban areas in Britain both for groups of species classified regarding their vulnerability to cat predation and individual species. Taking the availability of green space into account, we find negative relationships between cat densities and the number of bird species breeding in urban 1 km × 1 km squares. These relationships are particularly strong among groups of species that are vulnerable to cat predation. We find positive correlations between cat and avian densities; these have low explanatory power and shallow slopes among the species groups that are particularly vulnerable to cat predation. Evidence that the densities of individual species that are vulnerable to cat predation are negatively correlated with cat densities is equivocal, with at least half the species showing no marked pattern, and the remainder exhibiting contrasting patterns. Our results appear not to be confounded by the density of nest‐predating corvids (carrion crow, magpie, and jay), as the density of these species was not strongly negatively correlated with avian species richness or density. The general lack of marked negative correlations between cat and avian densities at our focal spatial scale may be a consequence of consistently high cat densities in our study areas (minimum density is 132 cats per square kilometre), and thus uniformly high impacts of cat populations on urban avian assemblages.  相似文献   

5.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

6.
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.  相似文献   

7.
Urban bird declines and the fear of cats   总被引:2,自引:0,他引:2  
The role of domestic cats Felis catus in the troubling, on-going decline of many urban bird populations in the UK is controversial. Debate, in the UK and elsewhere, has centred on the level of avian mortality directly imposed by cats, and on whether this is principally compensatory (the 'doomed surplus' hypothesis) or additive (the 'hapless survivor' hypothesis). However, it is well established that predators also have indirect, sub-lethal effects on their prey where life-history responses to predation risk affect birth and death rates. Here, using a simple model combining cat predation on birds with a sub-lethal (fear) effect of cat density on bird fecundity, we show that these sub-lethal effects may be substantial for urban songbirds. When cat densities are as high as has been recorded in the UK, and even when predation mortality is low (e.g. <1%), a small reduction in fecundity due to sub-lethal effects (e.g. <1 offspring year−1 cat−1) can result in marked decreases in bird abundances (up to 95%). Thus, low predation rates in urban areas do not necessarily equate with a correspondingly low impact of cats on birds. Sub-lethal effects may depress bird populations to such an extent that low predation rates simply reflect low prey numbers.  相似文献   

8.
Factors affecting nest predation on forest songbirds in North America   总被引:2,自引:1,他引:1  
FRANK R. THOMPSON  III 《Ibis》2007,149(S2):98-109
Nest predation is an important factor in the ecology of passerines and can be a large source of mortality for birds. I provide an overview of factors affecting nest predation of passerines in North America with the goal that it may provide some insight into the ecology and management of woodland birds in the United Kingdom. Although several factors influence productivity, nest success is perhaps the most widely measured demographic characteristic of open-cup-nesting birds, and nest predation is usually the largest cause of nest failure. The identity of predator species, and how their importance varies with habitat and landscape factors, must be known for managers and scientists to design effective conservation plans and place research on nest predation in the appropriate context. Recent studies using video surveillance have made significant contributions to our understanding of the relative importance of different predator taxa in North America. Spatial and temporal variation in nest predation can be better understood when landscapes are placed in a biogeographical context and local habitat and nest-site effects are placed in a landscape context. Low productivity resulting from high nest predation is one of several potential causes of bird population declines in North America and the UK. Although the 'forest fragmentation paradigm' from the eastern US may not apply directly to the UK, thinking about avian demographics from a multiscale perspective, and consideration of factors affecting nest predation with knowledge of the dominant predator species, may provide insight into population declines.  相似文献   

9.
Corvids are often viewed as efficient predators capable of limiting prey species populations. Despite this widely held belief, a comprehensive review quantifying the effect of corvids on the demography of prey species is lacking. We examine the impacts of crows, ravens Corvus spp. and Eurasian Magpies Pica pica on the population parameters of other bird species. We summarize results from 42 studies, which included 326 explicit evaluations of relationships between a corvid and a potential prey species. Population parameters of studied prey species were categorized as abundance‐related (numbers, nest density) or productivity‐related (nest success, brood size). Information from both experimental removal studies and correlative studies was examined. Combining all studies, no negative influence of corvids on either abundance or productivity of prey species was found in 81% of cases. Negative impacts were significantly more likely in cases examining productivity rather than abundance (46 vs. 10%). Experimental studies that removed only corvid species were significantly less likely to show a positive impact on productivity than those removing corvids alongside other predators (16 vs. 60%). This suggests that the impact of corvids is smaller than that of other predators, or that compensatory predation occurs. The impact of corvids was similar between diverse avian groups (such as gamebirds, passerines and waders; or ground‐nesting and other species). Crows were found to be significantly more likely to have a negative impact on prey species productivity than were Magpies (62 vs. 12%), but no differences were found in relation to prey abundance. We conclude that while corvids can have a negative impact on bird species, their impact is small overall, and nearly five times more frequent for productivity than for abundance. These results suggest that in most cases bird populations are unlikely to be limited by corvid predation and that conservation measures may generally be better targeted at other limiting factors. However, negative impacts were found in a minority of cases, and those may require further investigation to develop management tools to mitigate such impacts where they are of economic or conservation concern.  相似文献   

10.
ABSTRACT Habitat management for ducks has significantly influenced prairies and wetlands used by other species. However, the effects of management on other species have not been clearly assessed. We present the first study to compare the nesting success of ducks with the productivity of coexisting passerines. We evaluated effects of cattle grazing, subdivision of fields, habitat edges, year, and vegetation structure on duck and songbird nesting success in 32 mixed-grass prairie fields in southern Alberta, Canada. Duck and songbird nesting success were not correlated. Duck nesting success was influenced by timing of grazing and vegetation structure, and tended to be higher in wetter years, whereas nesting success of most songbirds was not influenced by vegetation structure or grazing, and was sometimes higher in drier years. Local habitat management for ducks cannot be assumed to benefit songbirds. However, some management strategies, such as those that promote tall grass and short litter, might benefit both taxa.  相似文献   

11.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

12.
Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.  相似文献   

13.
The issue of predator limitation of vertebrate prey populations is contentious, particularly when it involves species of economic or conservation value. In this paper, we examine the case of raptor predation on upland passerines and waders in Scotland. We analysed the abundance of five wader and passerine species on an upland sporting estate in southern Scotland during an eight-year period when hen harrier, peregrine and merlin numbers increased due to strict law enforcement. The abundance of meadow pipit and skylark declined significantly during this time. Golden plover also showed a declining trend, whereas curlew increased significantly and there was a near significant increase in lapwings. Contrasting the local population trends of these species with trends on nearby areas revealed higher rates of decline for meadow pipit and skylark at the site where raptors increased, but no differences in trends for any of the three wader species. There was a negative relationship between the number of breeding harriers and meadow pipit abundance the same year and between total annual raptor numbers and meadow pipit abundance. Predation rates of meadow pipit and skylark determined from observations at harrier nests suggested that predation in June was sufficient to remove up to 40% of the June meadow pipit population and up to 34% of the June skylark population. This 'quasi-natural' experiment suggests that harrier predation limited the abundance of their main prey, meadow pipit, and possibly the abundance of skylark. Thus, high densities of harriers may in theory reduce the abundance of the prey species which determine their breeding densities, potentially leading to lower harrier breeding densities in subsequent years. We found no evidence to suggest that raptor predation limited the populations of any of the three wader species. We infer that concerns over the impact of natural densities of hen harriers on vulnerable upland waders are unjustified.  相似文献   

14.
Human activities impact upon natural habitats used by birds for breeding and foraging, and lead to changes in the composition and spatial distribution of predator communities, mainly through loss, fragmentation and disturbance of formerly pristine habitat. Yet possible fitness consequences of such changes through impacts on bird nest-site selection remain poorly known. Here we study nest-site selection and reproductive success of Placid Greenbuls Phyllastrephus placidus in the Taita Hills, southeast Kenya. We show that habitat features associated with nest-site selection by this insectivorous, open-cup-nesting bird species vary among forest fragments that are exposed to different levels of habitat disturbance. Such differences in sites selected for breeding result from a plastic response to fragment-specific conditions or may be driven by fragment-specific variation in the distribution and availability of certain habitat features. Given the overall high nest predation rates in our study area, we expected variation in nest-site selection to correlate with reproductive success and nestling condition, but detected no such relationship. Because predator density and nest predation rates may vary strongly in space and time, a better understanding of spatio-temporal variation in predator communities is needed to assess the possible adaptive value of nest-site selection strategies for reducing the high predation rates that are typical for this and many other open-cup-nesting tropical passerines.  相似文献   

15.
Understanding the impact of habitat edges provides a key to deciphering how community dynamics change as functions of habitat structure and spatial scale. Motivated by studies of predation on bird nests in forest fragments and other cases of "cross-boundary subsidies," we present results from a partial differential equation model in which a patch-resident prey species suffers incidental mortality from a generalist predator species residing in the surrounding matrix habitat. We demonstrate that predator intrusions have the potential to induce critical patch size effects for the prey species, even when the prey's dynamics would otherwise preclude such effects. We also demonstrate that the existence of critical patch size effects depends on the functional response of the predator, with Lotka-Volterra and Type II functional responses generating the effect (but not Type III). We conclude by discussing how predator-induced critical patch size effects can influence opportunities for regionwide persistence of the prey by altering the fraction and spatial distribution of meaningful patches within a metapopulation.  相似文献   

16.
We consider systems with one predator and one prey, or a common predator and two prey species (apparent competitors) in source and sink habitats. In both models, the predator species is vulnerable to extinction, if productivity in the source is insufficient to rescue demographically deficient sink populations. Conversely, in the model with two prey species, if the source is too rich, one of the prey species may be driven extinct by apparent competition, since the predator can maintain a large population because of the alternative prey. Increasing the rate of predator movement from the source population has opposite effects on prey and predator persistence. High emigration rate exposes the predator population to danger of extinction, reducing the number of individuals that breed and produce offspring in the source habitat. This may promote coexistence of prey by relaxing predation pressure and apparent competition between the two prey species. The number of sinks and spatial arrangement of patches, or connectivity between patches, also influence persistence of the species. More sinks favor the prey and fewer sinks are advantageous to the predator. A linear pattern with the source at one end is profitable for the predator, and a centrifugal pattern in which the source is surrounded by sinks is advantageous to the prey. When the dispersal rate is low, effects of the spatial structure may exceed those of the number of sinks. In brief, productivity in patches and patterns of connectivity between patches differentially influence persistence of populations in different trophic levels.  相似文献   

17.
Lehikoinen A 《PloS one》2011,6(5):e20001
Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM) and decreased the overlap of migration season with later departing short-distance migrants (SDM). Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.  相似文献   

18.
The factors governing the recent declines observed in many songbirds have received much research interest, in particular whether increases of avian predators have had a negative effect on any of their prey species. In addition, further discussion has centered on whether or not the choice of model formulation has an effect on model inference. The study goal was to evaluate changes in the number of 10 songbird species in relation to a suite of environmental covariates, testing for any evidence in support of a predator effect using multiple model formulations to check for consistency in the results. We compare two different approaches to the analysis of long‐term garden bird monitoring data. The first approach models change in the prey species between 1970 and 2005 as a function of environmental covariates, including the abundance of an avian predator, while the second uses a change–change approach. Significant negative relationships were found between Eurasian Sparrowhawk Accipiter nisus and three of the 10 species analyzed, namely house Sparrow Passer domesticus, starling Sturnus vulgaris, and blue tit Cyanistes caeruleus. The results were consistent under both modeling approaches. It is not clear if this is a direct negative impact on the overall populations of these species or a behavioral response of the prey species to avoid feeding stations frequented by Sparrowhawks (which may in turn have population consequences, by reducing available resources). The species showing evidence of negative effects of Sparrowhawks were three of the four species most at risk to Sparrowhawk predation according to their prevalence in the predator's diet. The associations could be causal in nature, although in practical terms the reduction in the rate of change in numbers visiting gardens accredited to Sparrowhawks is relatively small, and so unlikely to be the main driver of observed population declines.  相似文献   

19.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

20.
Mobbing behaviour against predators is well documented but less is known about the factors influencing variation in behavioural response between prey species. We conducted a series of playback experiments to examine how the mobbing responses of prey species differed according to their relative risk of predation by the Eurasian Pygmy Owl Glaucidium passerinum, a predator of passerines. We found that mobbing among 22 passerine prey species was positively correlated with their prevalence in the Pygmy Owl diet. To compare mobbing behaviour between two seasons, we conducted playback experiments during spring (breeding season) and autumn (non‐breeding season). Contrary to previous studies, we found that mobbing intensity was greater during autumn than in spring. Our study shows a differential mobbing response of 22 species to the calls from one predator species and underscores the importance of considering seasonal variation in mobbing behaviour. Mobbing response differences observed among bird species strongly suggest different cooperation behaviour at the community level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号