首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barred owls (Strix varia) are forest-dwelling owls, native to eastern North America, with populations that expanded westward into the range of the spotted owl (Strix occidentalis). Barred owls exert an overwhelmingly negative influence on spotted owls, thereby threatening spotted owl population viability where the species co-occur. In this review, we provide an overview of the barred owl's range expansion and detail and synthesize previously published literature on spotted and barred owls within the range of the spotted owl as related to potential future outcomes for the northern spotted owl (S. o. caurina). We include research on diet, habitat use and selection, effects of barred owls on spotted owl demography and behavior, hybridization with spotted owls, parasites, contemporary management, and future research needs for spotted owl populations given continued barred owl expansion throughout western North America. Our literature review and synthesis should provide managers with the information necessary to develop strategies that mitigate deleterious effects of barred owls at local and landscape scales. © 2019 The Wildlife Society.  相似文献   

2.
3.
The spotted owl (Strix occidentalis) is a threatened species in many areas of its western North American range. Concomitant with its decline has been a rapid invasion of its range and habitat by barred owls (Strix varia), a native species that was restricted, until relatively recently, to eastern North America. We assess the theoretical potential for negative interactions between these two owls by examining size dimorphism and ecological relationships within various owl assemblages throughout the world. We then review the anecdotal, natural history, modeling, and experimental evidence that suggest barred owls may negatively affect spotted owls with at least a potential for the competitive exclusion of spotted owls by barred owls throughout all or part of the former’2019;s range. While it is widely accepted that barred owls are either causing or exacerbating declines of spotted owl populations, there are confounding factors, such as habitat loss and bad weather that also may contribute to declines of spotted owls. Both theory and empirical information suggest that barred owls are likely to have negative effects on spotted owl range and density, but the degree of the impact is not predictable. There is a conservation conundrum here, in that the barred owl is a native species that has expanded its range westwards, either naturally or with a degree of human facilitation, and now constitutes a major threat to the viability of another native species, the threatened spotted owl. We propose that only through carefully designed experiments involving removal of barred owls will we be able to determine if recent declines in spotted owl populations are caused by barred owls or by other factors. It is rare in conservation science that replicate study areas exist for which we also have long-standing demographic information, as is the case with the spotted owl. Removal experiments would take advantage of the wealth of data on spotted owls, and allow ecologists to assess formally the impacts of an invasive species on a threatened species, as well as to suggest mitigation measures.  相似文献   

4.
The range expansion by barred owls (Strix varia) into western North America has raised considerable concern regarding their potential effects on declining northern spotted owl (Strix occidentalis caurina) populations, yet most information on the occurrence of barred owls in the region is limited to incidental detections during surveys for spotted owls. To address this shortcoming we investigated response behavior, detection probabilities, and landscape occupancy patterns of barred owls in western Oregon, USA, during conspecific versus spotted owl call-broadcast surveys. Subtle differences in barred owl response behavior to conspecific versus spotted owl vocalizations combined with minor procedural differences between species-specific survey protocols led to a sizeable difference in estimated detection probabilities during conspecific (0.66, 95% CI = 0.61–0.71) versus spotted owl (0.48, 95% CI = 0.39–0.56) surveys. We identified 61 territorial pairs of barred owls during repeated surveys of a multi-ownership study area with the probability of occupancy being highest in the structurally diverse mixture of mature and old forests that occurred almost entirely on public lands. Our findings suggest that research and management strategies to address potential competitive interactions between spotted owls and barred owls will require carefully designed, species-specific survey methods that account for erratic response behaviors and imperfect detection of both species. Our sampling methods can be used by forest managers to determine the occurrence and distribution of barred owls with high confidence. © 2011 The Wildlife Society.  相似文献   

5.
Abstract: Northern spotted owls (Strix occidentalis caurina) have received intense research and management interest since their listing as a threatened species by the United States Fish and Wildlife Service in 1990. Several spotted owl (Strix occidentalis) response variables have been examined in various investigations, but recent advances in statistical modeling permit evaluations of temporal and spatial variability in site occupancy, local-extinction, and colonization probabilities while incorporating imperfect detection probabilities. Following recent work by other researchers on site occupancy dynamics of spotted owls in Oregon, USA, we evaluated temporal variability of detection, occupancy, local-extinction, and colonization probabilities for spotted owls, as well as potential influences of barred owl (Strix varia) presence on these parameters. We used spotted owl survey data collected from 1990 to 2003 on a study area in the eastern Cascades Mountains, Washington, USA, to compare competing occupancy models from Program PRESENCE using Akaike's Information Criterion. Detection probabilities for individual spotted owls ranged from 0.54 to 0.80 if barred owls were not detected during the survey season and from 0.19 to 0.71 if barred owls were detected during the survey season. Pair detection probabilities ranged from 0.27 to 0.67 if barred owls were not detected during an individual survey and from 0.09 to 0.36 if barred owls were detected during an individual survey. During the study, site occupancy probabilities for spotted owl pairs declined by approximately 50%. For all spotted owls, both singles and pairs, site occupancy probabilities declined moderately during the study. Barred owl presence was negatively associated with spotted owl detection probabilities, and it had a positive association with local-extinction probabilities for all spotted owls, both singles and pairs. Given that our study area has supported higher densities of barred owls for longer periods than other study areas, our results may provide insight into how barred owls have influenced spotted owl site occupancy dynamics in adjacent British Columbia, Canada, or will influence spotted owl site occupancy dynamics in Oregon and California, USA, in the future.  相似文献   

6.
The northern spotted owl (Strix occidentalis caurina) is a threatened subspecies and the California spotted owl (Strix occidentalis occidentalis) is a subspecies of special concern in the western United States. Concern for their continued viability has arisen because of habitat loss caused by timber harvesting. The taxonomic status of the northern subspecies has been the subject of continuing controversy. We investigated the phylogeographical and population genetic structure of northern and California spotted owls with special reference to their region of contact. Mitochondrial DNA (mtDNA) control region sequences confirmed the existence of two well-differentiated lineages connected by a narrow hybrid zone in a region of low population density in north central California. Maximum-likelihood estimates indicated bidirectional gene flow between the lineages but limited introgression outside the region of contact. The lengths of both the mtDNA hybrid zone and the reduced density patch were similar and slightly exceeded estimates of natal dispersal distances. This suggests that the two subspecies were in secondary contact in a hybrid zone trapped by a population density trough. Consequently, the zone of interaction is expected to be geographically stable. We discovered a third, rare clade of haplotypes, which we interpreted to be a result of incomplete lineage sorting; those haplotypes result in a paraphyletic northern spotted owl with respect to the California spotted owl. A congeneric species, the barred owl (Strix varia), occasionally hybridizes with spotted owls; our results indicated an upper bound for the frequency of barred owl mtDNA haplotypes in northern spotted owl populations of 3%.  相似文献   

7.
We identified four diagnostic microsatellite loci that distinguish spotted owls (Strix occidentalis), barred owls (Strix varia), F1 hybrids and backcrosses. Thirty‐four out of 52 loci tested (65.4%) successfully amplified, and four of these loci (11.8%) had allele sizes that did not overlap between spotted and barred owls. The probability of correctly identifying a backcross with these four loci is 0.875. Genotyping potential hybrid owls with these markers revealed that field identifications were often wrong. Given the difficulty of identifying hybrids in the field, these markers will be useful for hybrid identification, law enforcement and spotted owl conservation.  相似文献   

8.
9.
We examined associations between annual reproduction and climate for 6 populations of individually marked northern spotted owls (Strix occidentalis caurina) in Washington and Oregon. We used an information-theoretical approach and mixed models to evaluate statistical models representing a priori hypotheses about the effects of weather and climate on reproduction. Reproduction was higher for adult than subadult owls and declined as the proportion of spotted owl territories with barred owl (Strix varia) detections increased. Similar to other spotted owl studies, we found that reproduction was negatively associated with cold, wet winters and nesting seasons at 3 of 6 study areas. In addition, we identified new relationships between reproduction, annual precipitation, storms, and regional climate cycles. For 3 of 6 areas, we found a quadratic relation between precipitation (rain and snow) and reproduction, with the number of young fledged per pair per year declining as precipitation in the previous year deviated from average levels. A meta-analysis conducted across all 6 areas indicated that reproduction at the regional level had a quadratic association with total winter snowfall in the preceding winter and was positively related to temperatures during the previous summer and fall. The amount of annual variation in reproduction accounted for by weather and climate varied widely across the 6 areas (4–79%), whereas variation in weather and climate across owl territories accounted for little of the spatial variation in reproduction (0–4%). Our results suggest that across the range of the species climate factors affecting prey abundance may have a greater effect on reproduction than direct effects of weather on nestlings. © 2011 The Wildlife Society.  相似文献   

10.
We developed 37 great gray owl (Strix nebulosa) microsatellite primers from CA and TAGA enriched genomic libraries. Primers were tested in 15 great gray owls from California, USA and Alberta, Canada as well as two other Strix species, spotted owl (S. occidentalis) and barred owl (S. varia). These markers will have broad application in investigations of Strix population structure and genetic diversity.  相似文献   

11.
State and federal actions to conserve northern spotted owl (Strix occidentalis caurina) habitat are largely initiated by establishing habitat occupancy. Northern spotted owl occupancy is typically assessed by eliciting their response to simulated conspecific vocalizations. However, proximity of barred owls (Strix varia)-a significant threat to northern spotted owls-can suppress northern spotted owl responsiveness to vocalization surveys and hence their probability of detection. We developed a survey method to simultaneously detect both species that does not require vocalization. Detection dogs (Canis familiaris) located owl pellets accumulated under roost sites, within search areas selected using habitat association maps. We compared success of detection dog surveys to vocalization surveys slightly modified from the U.S. Fish and Wildlife Service's Draft 2010 Survey Protocol. Seventeen 2 km ×2 km polygons were each surveyed multiple times in an area where northern spotted owls were known to nest prior to 1997 and barred owl density was thought to be low. Mitochondrial DNA was used to confirm species from pellets detected by dogs. Spotted owl and barred owl detection probabilities were significantly higher for dog than vocalization surveys. For spotted owls, this difference increased with number of site visits. Cumulative detection probabilities of northern spotted owls were 29% after session 1, 62% after session 2, and 87% after session 3 for dog surveys, compared to 25% after session 1, increasing to 59% by session 6 for vocalization surveys. Mean detection probability for barred owls was 20.1% for dog surveys and 7.3% for vocal surveys. Results suggest that detection dog surveys can complement vocalization surveys by providing a reliable method for establishing occupancy of both northern spotted and barred owl without requiring owl vocalization. This helps meet objectives of Recovery Actions 24 and 25 of the Revised Recovery Plan for the Northern Spotted Owl.  相似文献   

12.
We studied home range and habitat selection of radio-marked adult California spotted owls (Strix occidentalis occidentalis) randomly selected from among the breeding population of owls in the central Sierra Nevada, California from June to October 2006. The most parsimonious home-range estimate for our data was 555 ha (SE = 100 ha). Home-range size was positively correlated with the number of vegetation patches in the home range (habitat heterogeneity). We used resource selection ratios to examine selection of vegetation types by owls within our study area. Owl home ranges contained a high proportion of mature conifer forest, relative to its availability, although the confidence interval for this estimate overlapped one. We also used resource selection functions (RSF) to examine owl foraging habitat selection. Relative probability of selection of foraging habitat was correlated with vegetation classes, patch size, and their interaction. Owls showed highest selection rates for large patches (>10 ha) of pole-sized coniferous forest. Our results suggested that spotted owls in the central Sierra Nevada used habitat that contained a high proportion of mature conifer forest at the home-range scale, but at a finer scale (foraging site selection) owls used other vegetation classes interspersed among mature forest patches, consistent with our hypothesis that spotted owls may use other forest types besides old growth and mature forests when foraging. Our study provides an unbiased estimate of habitat use by spotted owls in the central Sierra Nevada. Our results suggest that forest managers continue to protect remaining mature and old-growth forests in the central Sierra Nevada because owl home ranges contain high proportions of these habitats. However, our results also showed that owls used younger stands as foraging habitat so that landscape heterogeneity, with respect to cover types, may be an important consideration for management but we did not attempt to relate our findings to fitness of owls. Thus management for some level of landscape heterogeneity for the benefit of owls should proceed with caution or under an adaptive management framework. © 2011 The Wildlife Society.  相似文献   

13.
Conservation planning for the federally threatened northern spotted owl (Strix occidentalis caurina) requires an ability to predict their responses to existing and future habitat conditions. To inform such planning we modeled habitat selection by northern spotted owls based upon fine-scale (approx. 1.0 ha) characteristics within stands comprised primarily of mixed-aged, mixed coniferous forests of southwestern Oregon and north-central California. We sampled nocturnal (i.e., primarily foraging) habitat use by 71 radio-tagged spotted owls over 5 yr in 3 study areas and sampled vegetative and physical environmental conditions at inventory plots within 95% utilization distributions of each bird. We compared conditions at available forest patches, represented by the inventory plots, with those at patches used by owls using discrete-choice regressions, the coefficients from which were used to construct exponential resource selection functions (RSFs) for each study area and for all 3 areas combined. Cross-validation testing indicated that the combined RSF was reasonably robust to local variation in habitat availability. The relative probability that a fine-scale patch was selected decreased nonlinearly with distances from nests and streams; varied unimodally with increasing average diameter of coniferous trees and also with increasing basal area of Douglas-fir (Pseudotsuga menziesii) trees; increased linearly with increasing basal areas of sugar pine (Pinus lambertiana) and hardwood trees and with increasing density of understory shrubs. Large-diameter trees (>66 cm) appeared important <400 m from nest sites. The RSF can support comparative risk assessments of the short- versus long-term effects of silvicultural alternatives designed to integrate forest ecosystem restoration and habitat improvement for northern spotted owls. Results suggest fine-scale factors may influence population fitness among spotted owls. © 2011 The Wildlife Society.  相似文献   

14.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   

15.
Northern spotted owls (Strix occidentalis caurina) have received intense research and management interest since their listing as a threatened species by the United States Fish and Wildlife Service in 1990. For example, public and private forest managers in the Pacific Northwest, USA, conduct surveys to determine presence or absence of spotted owls prior to timber harvest operations. However, although recently developed statistical methods have been applied to presence–absence data collected during research surveys, the effectiveness of operational surveys for detecting spotted owls and evaluating site occupancy dynamics is not known. We used spotted owl survey data collected from 1995 to 2009 on a study area in interior northern California, USA, to evaluate competing occupancy models from Program PRESENCE using Akaike's Information Criterion (AIC). During 1,282 individual surveys, we recorded 480 spotted owl detections (37.4%) and 13 barred owl (1.0%) detections. Average per visit detection probability (85% CL) for single and paired spotted owls was 0.93 (0.90–0.96) for informed daytime, stand-based searches and 0.47 (0.43–0.51) for nighttime, station-based surveys (estimated from the best model); the average per visit detection probability from the null model was 0.67 (0.64–0.70). Average pair-only detection probabilities were 0.86 (0.81–0.90) for informed daytime, stand-based searches and 0.23 (0.18–0.29) for nighttime, station-based surveys; the average per visit detection probability from the null model was 0.63 (0.58–0.68). Site occupancy for any owl declined from 0.81 (0.59–0.93) in 1995 to 0.50 (0.39–0.60) in 2009; pair occupancy declined from 0.75 (0.56–0.87) to 0.46 (0.31–0.61). Our results suggest that a combination of 1 informed stand and 2 station-based operational surveys can support determinations of spotted owl site status (either a single or a pair) at desired levels of confidence. However, our information was collected in an area where barred owls were rarely detected. Surveys conducted in areas that support well-established barred owl populations are likely to be less effective for determining presence or absence of spotted owls and may require more surveys and/or different survey methods to determine site status with confidence. © 2012 The Wildlife Society.  相似文献   

16.
Hierarchical genetic structure was examined in the three geographically-defined subspecies of spotted owl (Strix occidentalis) to define relationships among subspecies and quantify variation within and among regional and local populations. Sequences (522 bp) from domains I and II of the mitochondrial control region were analyzed for 213 individuals from 30 local breeding areas. Results confirmed significant differences between northern spotted owls and the other traditional geographically defined subspecies but did not provide support for subspecific level differences between California and Mexican spotted owls. Divergence times among subspecies estimated with a 936 bp portion of the cytochrome b gene dated Northern and California/Mexican spotted owl divergence time to 115,000–125,000 years ago, whereas California/Mexican spotted owl divergence was estimated at 15,000 years ago. Nested clade analyses indicated an association between California spotted owl and Mexican spotted owl haplotypes, implying historical contact between the two groups. Results also identified a number of individuals geographically classified as northern spotted owls (S. o. caurina) that contained haplotypes identified as California spotted owls (S. o. caurina). Among all northern spotted owls sampled (n=131), 12.9% contained California spotted owl haplotypes. In the Klamath region, which is the contact zone between the two subspecies, 20.3% (n=59) of owls were classified as California spotted owls. The Klamath region is a zone of hybridization and speciation for many other taxa as well. Analyses of population structure indicated gene flow among regions within geographically defined subspecies although there was significant differentiation among northern and southern regions of Mexican spotted owls. Among all areas examined, genetic diversity was not significantly reduced except in California spotted owls where the southern region consists of one haplotype. Our results indicate a stable contact zone between northern and California spotted owls, maintaining distinct subspecific haplotypes within their traditional ranges. This supports recovery efforts based on the traditional subspecies designation for the northern spotted owl. Further, although little variation was found between California and Mexican spotted owls, we suggest they should be managed separately because of current isolation between groups.  相似文献   

17.
The California spotted owl (Strix occidentalis occidentalis) is an older-forest associated species that resides at the center of forest management planning in the Sierra Nevada and Southern California, USA, which are experiencing increasingly large and severe wildfires and drought-related tree mortality. We leveraged advances in passive acoustic survey technologies to develop an acoustically assisted survey design that could increase the efficiency and effectiveness of project-level surveys for spotted owls, allowing surveys to be completed in a single year instead of in multiple years. We deployed an array of autonomous recording units (ARUs) across a landscape and identified spotted owl vocalizations in the resulting audio using BirdNET. We then evaluated spatio-temporal patterns in spotted owl vocalizations near occupied territories and the ability of a crew naïve to the location of occupied territories to locate spotted owls based on patterns of acoustic detections. After only 3 weeks of acoustic surveys, ≥1 ARU within 750 m of all 17 occupied territories obtained spotted owl detections across ≥2 nights. When active surveys using broadcast calling were conducted near ARUs with spotted owl detections by surveyors naïve to territory occupancy status and locations, surveyors located owls in 93% to 100% of occupied territories with ≤3 surveys. To further improve the efficiency of spotted owl surveys, we developed a statistical model to identify and prioritize areas across the Sierra Nevada for different survey methods (active only, acoustically assisted, no surveys) based on the expected probability of occupancy predicted from remotely sensed measurements of tree height and historical occupancy. Depending on managers' tolerance for false negatives, this model could help identify large areas that might not benefit from surveys based on low expected occupancy probabilities and areas where acoustically assisted surveys might enhance survey effectiveness and efficiency. Collectively, these findings can help managers streamline the survey process and thus increase the pace of forest restoration while minimizing potential near-term adverse effects on California spotted owls.  相似文献   

18.
Many owl species use the same nesting and food resources, which causes strong interspecific competition and spatio-temporal niche separation. We made use of a recent colonisation of Ural Owls (Strix uralensis) in southern Poland to compare habitat preferences of Tawny Owls (Strix aluco) allopatry and sympatry with Ural Owls. We investigated spatial niche segregation of Ural Owl and the Tawny Owl in sympatry and compared habitat preferences of Tawny Owls breeding in allopatry and sympatry. Tawny Owls breeding in sympatry with Ural Owls occupied forests with higher canopy compactness, sites located closer to forest border and to built-up areas, as well as stands with a higher share of fir and spruce and a lower share of beech as compared to sites occupied by Ural Owls. Allopatric Tawny Owls occupied sites with lower canopy compactness and bred at sites located further from forest borders and in stands with lower share of fir and spruce and a higher share of deciduous as compared to sympatric Tawny Owls. As Ural owls are dominant in relation to Tawny Owls, this indicates that the presence of Ural Owls prevents Tawny Owls from occupying deciduous-dominated and old stands located in forest interior areas, far from buildings and forest edges. The results support habitat displacement between the two species when breeding in sympatry. We also show that protection of large forest patches is crucial for the Ural Owl, a species still rare in central Europe, while small patches are occupied by the abundant Tawny Owl.  相似文献   

19.
Conspecific broadcasts are effective to increase detection of owls. To determine the most appropriate time of the year to survey owls, we played conspecific owl vocalisations monthly in a temperate rainforest of southern Chile. From 12 broadcast points surveyed we recorded detections of Glaucidium nana, Strix rufipes and Tyto alba. Glaucidium nana presented a bimodal detection curve throughout the year and we recorded two regular vocalisations in response to broadcasting: contact pair call and territorial call. Strix rufipes and T. alba both showed a peak of detection between February and May. Strix rufipes presented three vocalisations: territorial call, contact pair call and female contact pair call while T. alba uttered two vocalisations: territorial call and twittering call. We recommend surveys during the end of the breeding season (austral summer–autumn) when detection is higher in most owls. Surveys should also take into consideration the variability of the vocalisations and include covariates in monitoring to evaluate occupancy/detection models.  相似文献   

20.
Mitochondrial DNA control region sequences of spotted owls (Strix occidentalis) allowed us to investigate gene flow, genetic structure, and biogeographic relationships among these forest-dwelling birds of western North America Estimates of gene flow based on genetic partitioning and the phylogeography of haplotypes indicate substantial dispersal within three long-recognized subspecies. However, patterns of individual phyletic relationships indicate a historical absence of gene flow among the subspecies, which are essentially monophyletic. The pattern of haplotype coalescence enabled us to identify the approximate timing and direction of a recent episode of gene flow from the Sierra Nevada to the northern coastal ranges. The three subspecies comprise phylogenetic species, and the northern spotted owl (S. o. caurina) is sister to a clade of California (S. o. occidentalis) plus Mexican spotted owls (S o lucida); this represents a novel biogeographic pattern within birds. The California spotted owl had substantially lower nucleotide diversity than the other two subspecies; this result is inconsistent with present patterns of population density A causal explanation requires postulating a severe bottleneck or a selective sweep, either of which was confined to only one geographic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号