首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An animal’s home range use is influenced by the landscape type. European hare (Lepus europaeus) home ranging behaviour has been studied only in agricultural areas with medium to large fields. In agricultural areas with small fields, European hares’ locomotor behaviour is expected to be more localised. We tracked nine European hares by means of global positioning system (GPS) and very high-frequency (VHF) collars during summer in an agricultural area with small fields in Lower Austria. In particular, we analysed the hares’ space use at a fine temporal scale, such as when they were active and resting within single 24-h periods. Furthermore, we compared data (day–day distances and day–night distances travelled) calculated from GPS and VHF telemetry. Home ranges were smaller, and the distances between areas used for activity and inactivity were shorter, in this agricultural area with small fields than has ever been measured in other agricultural areas with larger fields. Both active and inactive European hares expressed a preference for areas near field edges. Our findings suggest that with GPS, it is possible to distinguish between the movement path and the relative location of distinctly used areas within an animal’s home range, whereas with VHF these two parameters may be difficult to separate. In conclusion, our results show that in areas where resources are easily accessible, such as in agricultural areas with small fields, the European hare is able to reduce its home range size to almost half of the minimum size that has been recorded so far in other habitats. As small home ranges involve less energy expenditure for movement, our results suggest that animals living in agro-ecosystems may benefit from small fields.  相似文献   

2.
Movement influences a myriad of ecological processes operating at multiple spatial and temporal scales. Yet our understanding of animal movement is limited by the resolution of data that can be obtained from individuals. Traditional approaches implicitly assume that movement decisions are made at the spatial and temporal scales of observation, although this scale is typically an artifact of data‐gathering technology rather than biological realism. To address this limitation, we used telemetry‐based movement data for caribou Rangifer tarandus in Newfoundland, Canada, and compared movement decisions estimated at the temporal resolution of GPS relocations (2 h) to a novel model describing directional movement to areas reachable over an extended period. We showed that this newer model is a better predictor of movement decisions by caribou, with decisions made at the scale of ~2 km, including the strong avoidance of dense coniferous forest, an outcome not detectable at the scale of GPS relocations. These results illustrate the complexity of factors affecting animal movement decisions and the analytical challenges associated with their interpretation. Our novel modelling framework will help support increased accuracy in predictive models of animal space‐use, and thereby aid in determining biologically meaningful scales for collecting movement and habitat data.  相似文献   

3.
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad‐scale spatial‐temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter‐annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi‐scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter‐annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re‐locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio‐temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non‐migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large‐scale predictions for movement strategies, based on environmental structuring, with finer‐scale analysis of space‐use. Integrating different organizational levels of analysis provides a deeper understanding of the eco‐evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.  相似文献   

4.
We outline how principles of optimal foraging developed for diet and food patch selection might be applied to movement behaviour expressed over larger spatial and temporal scales. Our focus is on large mammalian herbivores, capable of carrying global positioning system (GPS) collars operating through the seasonal cycle and dependent on vegetation resources that are fixed in space but seasonally variable in availability and nutritional value. The concept of intermittent movement leads to the recognition of distinct movement modes over a hierarchy of spatio-temporal scales. Over larger scales, periods with relatively low displacement may indicate settlement within foraging areas, habitat units or seasonal ranges. Directed movements connect these patches or places used for other activities. Selection is expressed by switches in movement mode and the intensity of utilization by the settlement period relative to the area covered. The type of benefit obtained during settlement periods may be inferred from movement patterns, local environmental features, or the diel activity schedule. Rates of movement indicate changing costs in time and energy over the seasonal cycle, between years and among regions. GPS telemetry potentially enables large-scale movement responses to changing environmental conditions to be linked to population performance.  相似文献   

5.
Sympatric species can minimise interspecific competition by spatial avoidance or by altering their temporal activity to reduce encounter rates. The Tasmanian devil (Sarcophilus harrisii), the largest carnivorous marsupial, coexists with the smaller spotted‐tailed quoll (Dasyurus maculatus) in Tasmania, Australia. Quolls may be susceptible to interspecific competition from devils, because they utilise similar habitats, consume similar prey species and are displaced by devils at food sources. Such competition might cause quolls to spatially or temporally avoid devils. To investigate whether spatial or temporal avoidance occurred, we deployed GPS collars on sympatric devils and quolls and conducted a camera survey at a site in northwest Tasmania where the devil population was not affected by devil facial tumour disease. GPS tracking coincided with the lactation period when devils and quolls had young in dens and continued until weaning occurred. We found little spatial segregation of home range and core area placement between devils and quolls and among devils. Quolls showed more spatial segregation within the sexes than between them. Devils had larger home ranges than quolls. Male devils had larger home ranges than females, but there was no difference in home range size between the sexes of quolls. Females of both species travelled significantly further per night than did males. There was moderate temporal partitioning between the two species: devil activity peaked after dusk and devils remained active until the early morning, while quoll activity showed distinct peaks around dusk and dawn. In conclusion, quolls did not spatially avoid devils but moderate temporal partitioning occurred. It is plausible that quolls are active at different times of the diel cycle to reduce encountering devils, but further studies are needed to resolve the cause of this temporal partitioning.  相似文献   

6.
Understanding factors that influence habitat selection in heterogeneous landscapes is fundamental for establishing realistic models on animal distribution to inform rangeland management. In this study, we tested whether seasonal variation in habitat selection within the home range of a large herbivore was influenced by constraints such as, distances from water and central place using semi‐free range cattle (Bos taurus) as a case study. We also tested whether shifts in space use over time were dependent on spatial scale and on the overall abundance of resources. We predicted that distance from water significantly influenced dry season habitat selection while the influence of the central place on habitat selection was season‐independent. We also predicted that shifts in space use over time were spatial scale‐dependent, and that large herbivores would include more diverse habitats in their home ranges during the dry season, when water and food resources are less abundant. Multinomial logit models were used to construct habitat selection models with distances from water and central place as habitat‐specific constraints. Results showed significant variations in habitat selection between the dry and wet season. As predicted, the effect of distance from central place was season‐independent, while the effect of water was not included in the top dry season models contrary to expectation. A diverse range of habitats were also selected during the dry season including agricultural fields. Results also indicated that shifts in space use were spatial scale dependent, with core areas being more sensitive to changes than the home range. In addition, shifts in space use responded to temporal changes in habitat composition. Overall, our results suggest that semi‐free range herbivores adopt different foraging strategies in response to spatial‐temporal changes in habitat availability.  相似文献   

7.
We introduce a new technique for delineating animal home ranges that is relatively simple and intuitive: the potential path area (PPA) home range. PPA home ranges are based on existing theory from time geography, where an animal's movement is constrained by known locations in space–time (i.e., n telemetry points) and a measure of mobility (e.g., maximum velocity). Using the formulation we provide, PPA home ranges can be easily implemented in a Geographic Information System (GIS). The advantage of the PPA home range is the explicit consideration of temporal limitations on animal movement. In discussion, we identify the PPA home range as a stand-alone measure of animal home range or as a way to augment existing home range techniques. Future developments are highlighted in the context of the usefulness of time geography for wildlife movement analysis. To facilitate the adoption of this technique we provide a tool for implementing this method. © 2011 The Wildlife Society.  相似文献   

8.
以佩戴具有无线电发射功能的GPS 颈圈(Lotek GPS_ 4400M) 的放归大熊猫“祥祥”作为目标动物, 2006 年4 月至2007 年2 月,采用无线电遥测技术(RT)和GPS 跟踪技术在卧龙自然保护区的“五一棚”区域, 每日监测大熊猫在野外环境下的生存状况、移动规律和觅食行为。为了比较RT 和GPS 在高山峡谷地区空间定位的可行性和有效性,我们引入空间定位率、地形特征、空间定位差、巢域大小和日移动距离等指标来分析RT 和GPS 之间的定位差异。结果表明:RT 的空间定位效率明显高于GPS 的自动定位(P < 0. 001),分别是54.1%(绘图法)和45. 2% (≧ 2D);不同月份RT 和GPS 的空间定位率之间具有显著性差异(P < 0. 05),这与大熊猫不同月份的海拔活动范围和觅食行为特性密切相关。RT 位点的地形指数中坡度高于GPS,坡向和海拔高度较GPS 定位点低,两种无线电遥测方法(两点直接计算法和绘图法)之间没有显著性差异(P > 0.05);同一天位点之间的距离(空间定位差)平均450 ~ 660 m 左右;RT 与GPS 所估测的大熊猫巢域大小,除5 月、9 月和12月RT 低于GPS 外,其余月份为前者高于后者,但无显著性差异(P > 0. 05);日移动距离除12 月份RT 小于GPS 外,其余月份都呈现出RT 大于GPS 的格局,统计检验结果两者之间差异显著(P < 0. 05);两种无线电遥测方法所测指数之间都无明显差异(P > 0. 05)。这说明RT 遥测和GPS 定位都可以应用于高山峡谷地区野生动物的生态学研究,而且GPS 无线电颈圈在亚高山和高山森林中具有可行性和有效性。  相似文献   

9.
Knowledge of the residency patterns of marine mammals is an important element for management and conservation strategies. Here we investigate a population of Grampus griseus off Pico Island, Azores. Our data set covers the period 2004–2007, based on at‐sea observations of 1,250 individually identified animals, 303 of known or assumed sex. Using photo identification and GPS locations we calculated mean monthly sighting rates and lagged identification rates to analyze temporal patterns, and estimated kernel density to study the home range. Our results show site fidelity and relatively restricted home ranges, which corroborate the existence of a resident population on the study site. We further document sex differences, including a higher number of males present in the area at any given time but females staying for longer consecutive periods, and male home ranges with significantly less overlap than those of females. These observations are consistent with a mating system based on multimale pods defending areas where females periodically return. We hypothesize that squid distribution is a major factor in structuring these patterns. These findings reinforce the need for a precautionary management approach that would include limiting pressure from commercial activities.  相似文献   

10.
Accurately quantifying animals' spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68(th) percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤ 0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student's t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2 ± 2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.  相似文献   

11.
Most large‐bodied wildlife populations in sub‐Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat complexity may change in the future is critical to the conservation of large mammal populations. Our study shows the importance of maintaining flood levels in the Okavango Delta and how the loss of seasonal floodplains will be compounded by changes in habitat configuration, forcing zebra to change their relative space use and enlarge home ranges, leading to increased competition for key resources and population declines.  相似文献   

12.
Studies on the ranging behaviour of birds often suggest that ranges vary seasonally with larger ranges in the non‐breeding compared to the breeding season. However, due to limitations in tracking methods very little is known about the underlying processes driving seasonal differences in ranging behaviour, especially in fragmented, heterogeneous landscapes. Such knowledge is particularly important if movements deliver essential ecosystem functions such as seed dispersal. We contrasted the daily ranging behaviour between the breeding and non‐breeding season of a frugivorous bird and demonstrate how larger seasonal ranges in the non‐breeding season emerge through switching from a stationary home range behaviour to nomadism. We tracked movements of 29 male trumpeter hornbills Bycanistes bucinator across a fragmented landscape of eastern South Africa during different breeding and non‐breeding seasons using high temporal resolution GPS data‐loggers. Birds in the breeding seasons showed a typical, stationary home range pattern. In the non‐breeding seasons birds, rather than expanding their stationary daily ranges, switched to nomadic movements that were characterized by shifts of the general location of daily ranges to a different area every couple of days. We also found that during the breeding seasons hornbills were mostly located in large continuous forests; birds in the non‐breeding seasons frequently used forest patches within the agricultural landscape and residential areas. These seasonal differences in the movement behaviour of trumpeter hornbills may have important consequences for seed dispersal of plant species. Our findings show how seasonal range expansion of frugivorous birds may be driven by fundamental behavioural changes that have important consequences for ecosystem processes.  相似文献   

13.
Understanding how large felids use space is essential for the design of conservation plans that are required for their survival. Jaguars (Panthera onca) and pumas (Puma concolor) are the largest felids in the Neotropics, and they are sympatric throughout the entire range of the jaguar. However, there is very little information about the spatial requirements of these two species in the tropical rainforests of Central America. Using satellite GPS collars, we compared the spatial ecology of jaguars and pumas in a tropical rainforest in southern Mexico. We found that jaguars had home ranges that were 2–6 times larger than those of pumas. The mean annual home range was 181.4 ± 4.0 km2 for female jaguars and 431.6 ± 152.6 km2 for males. Annual home range for the only female puma tracked was 34.3 km2, and 72.0 ± 85.2 km2 for males. Jaguars and pumas with overlapping home ranges showed little overlap of core areas and avoided using the same sites at the same time, which suggested that territoriality and avoidance were in play. Further evidence of avoidance was derived from our observation that pumas exhibited greater movement during the lightest periods of the day and jaguars moved most during the darkest. This temporal separation probably facilitates coexistence. Our data suggest that habitat destruction and fragmentation has more severe effects on jaguars than on pumas. According to our estimates, patches of at least 180 km2 of primary forest are required to meet the annual spatial requirements of female jaguars. Thus, to conserve jaguars in this region, large tracts of primary forest should be preserved. Importantly, this population of jaguars depends on the adequate preservation of connectivity between natural reserves in Mexico and Guatemala.  相似文献   

14.
了解动物栖息地和空间利用模式是开展野生动物放归自然的重要前提。为明确野化培训大熊猫(Ailuropoda melanoleuca)在野外环境中生境利用特征和空间格局,本文以2只野化培训大熊猫为研究对象,基于其野外GPS项圈数据,通过数字高程模型(DEM)、动物移动模块等工具分析其在野外环境中栖息地利用状况。结果表明:随着在野外环境时间的增加,2只大熊猫由低海拔西南坡的阔叶林逐渐向高海拔南坡针阔混交林区域移动,且坡度利用也存在明显的差异,但均偏向在17°~20°的平缓区域活动。在野外环境的最初一个月,2只大熊猫平均日移动距离较大,之后逐渐减小并趋于稳定。2只野化培训大熊猫在野外环境初期,活动区域大小随时间的变化而呈现出无规律的变化趋势,活动区域主要集中在3~4个栖息地斑块,且斑块间面积和距离各异。因此,认为野化培训大熊猫在野外栖息地环境初期属于不稳定的随机选择模式。  相似文献   

15.
Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.  相似文献   

16.
Global Positioning System (GPS) collars have revolutionized the field of spatial ecology, but to date, few primate studies have used them. We fitted a free-ranging, semi-habituated, juvenile male chacma baboon (Papio hamadryas ursinus) with an automatic self-releasing GPS collar and tracked his movements for 359?days. The collar captured 4254 fixes out of 5719 programmed opportunities, a 74.4?% acquisition rate, suggesting that the collar effectively tracked this baboon in a variety of habitat types. Of the data points captured, 73.7?% were three-dimensional fixes, and of these fixes, 66.9?% were highly accurate, having a dilution of precision of less than four. We calculated home range using three protocols with three estimation methods: minimum convex polygon, fixed kernel-density estimation (KDE), and fixed r local convex hull. Using all data points and the 95?% contour, these methods created home range estimations ranging from 10.8 to 23.1?km(2) for this baboon troop. Our results indicate that the KDE output using all data locations most accurately represented our data set, as it created a continuous home range boundary that excluded unused areas and outlying, potentially exploratory data points while including all seven sleeping sites and a movement corridor. However, home range estimations generated from KDE varied from 15.4 to 18.8?km(2) depending on the smoothing parameter used. Our results demonstrated that the ad hoc smoothing parameter selection technique was a better method for our data set than either the least squares cross-validation or biased cross-validation techniques. Our results demonstrate the need for primatologists to develop a standardized reporting method which documents the tool, screening protocol, and smoothing parameter used in the creation of home range estimations in order to make comparisons that are meaningful.  相似文献   

17.
Utilization distributions (UDs) can be used to describe the intensity with which an animal or human has used a certain geographical location. Within the domain of wildlife ecology, a density distribution model represents one way to describe an animals' home range. Several methods have been developed to derive UDs, and subsequently home ranges. Most of these methods, e.g. kernel density estimation (KDE), and local convex hull methods, have been developed with point-based datasets in mind, and do not utilize additional information that comes with GPS-based tracking data (e.g., temporal information). To employ such additional information we extend the point-based KDE approach to work with sequential GPS-point tracks, the outcome of which is a line-based KDE. We first describe the design criteria for the line-KDE algorithm. Then we introduce the basic modeling approach and its refinement through the introduction of a scaling function. This scaling function modifies the utilization distribution so that a bone-like probability distribution for a single GPS track segment is obtained. Finally we compare the estimated utilization distributions and home ranges for two datasets derived using our line-KDE approach with those obtained using the point-KDE and Brownian Bridge (BB) approaches. Advantages of the line-based KDE by design are (i) a better representation of utilization density near GPS points when compared against the BB approach, and (ii) the ability to model and retain movement corridors when compared against point-KDE.  相似文献   

18.
Many animal species segregate by sex. Such segregation may be social in nature, or ecological, or both. Grey seals (Halichoerus grypus), like many large mammals, are sexually size dimorphic. In size dimorphic species, allometric differences in morphology, metabolic rate and reproductive costs are likely. Such differences may require the sexes to use different foraging strategies or different habitats. To investigate sexual segregation of habitat in grey seals, we used satellite tracks from 95 (male 46; female 49) adults breeding at Sable Island, Nova Scotia (44 degrees N, 60 degrees W) collected from 1995 to 2005. Location estimates were made from satellite fixes using a state-space movement model to estimate true locations and regularize them in time. Location estimates were used to calculate home range kernels of male and female habitat use each month. Month by sex kernel home ranges revealed striking differences and dynamics in habitat use between males and females on spatial scales broader than most terrestrial examples and at temporal and spatial resolutions rarely available for marine species. Differences were most pronounced just before (October-December) and immediately after breeding (February-March). During both periods, males primarily used areas along the continental shelf break, while females mainly used mid-shelf regions. Coupled with previously identified sex-specific seasonal patterns of energy storage, diving and diet, our findings suggest that males and females differ profoundly in their spatial foraging strategies. These differences may serve to maximize fitness by reducing intersexual competition during key foraging periods.  相似文献   

19.
1. Animal search patterns reflect sensory perception ranges combined with memory and knowledge of the surrounding environment. 2. Random walks are used when the locations of resources are unknown, whereas directed walks should be optimal when the location of favourable habitats is known. However, directed walks have been quantified for very few species. 3. We re-analysed tracking data from three shark species to determine whether they were using directed walks, and if so, over which spatial scales. Fractal analysis was used to quantify how movement structure varied with spatial scale and determine whether the sharks were using patches. 4. Tiger sharks performed directed walks at large spatial scales (at least 6-8 km). Thresher sharks also showed directed movement (at scales of 400-1900 m), and adult threshers were able to orient at greater scales than juveniles, which may suggest that learning improves the ability to perform directed walks. Blacktip reef sharks had small home ranges, high site fidelity and showed no evidence of oriented movements at large scales. 5. There were inter- and intraspecific differences in path structure and patch size, although most individuals showed scale-dependent movements. Furthermore, some individuals of each species performed movements similar to a correlated random walk. 6. Sharks can perform directed walks over large spatial scales, with scales of movements reflecting site fidelity and home range size. Understanding when and where directed walks occur is crucial for developing more accurate population-level dispersal models.  相似文献   

20.
Fine-scale tracking of marine turtles using GPS-Argos PTTs   总被引:1,自引:0,他引:1  
High-accuracy location data of wildlife telemetry using conventional satellite location systems are difficult to obtain. However, such data are necessary to clarify the nature of movements and home range sizes of animals. In order to measure the high-accuracy location data, we developed new GPS-Argos Platform Terminal Transmitters (PTTs) which transmit both the conventional location and GPS location simultaneously. Two experiments, one in an artificial rearing pond and the other in the open sea, were performed. First, two hawksbill turtles were tracked with the PTTs in a 5 ha breeding pond in Thailand. Their home ranges using both data were calculated and found to be 2.96 ha and 0.93 ha by the GPS data, and 156,740 ha and 184,478 ha by a conventional data. Secondly, a female green turtle attached with the GPS-Argos was released from the coast of Pangnga Province, Thailand. There was a relationship between depth and speed of travel based on the GPS data. The data from the PTT showed that the turtle moved south along the coastline at the depth of less than 20 m for 5 days, and then stayed at a depth of less than 10 m for 4 days. However, we could not find any clear relationship using conventional data. Only a meandering movement at a variety of depths was observed. The results of the two experiments indicated the PTTs have an enormous potential for enhancing our understanding of fine-scale movement patterns and home ranges of marine turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号