首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peach shoot volatiles were attractive to mated female oriental fruit moth, Cydia molesta (Busck), in a dual choice arena. No preference was observed between leaf odours from the principle host plant, peach, and the secondary host plant, apple. Twenty-two compounds were identified in headspace volatiles of peach shoots using gas chromatography-mass spectrometry. Green leaf volatiles accounted for more than 50% of the total emitted volatiles. A bioassay-assisted fractionation using different sorbent polymers indicated an attractant effect of compounds with a chain length of 6-8 carbon atoms. The major compounds of this fraction were tested either singly or in combinations for behavioural response of females. Significant bioactivity was found for a three-component mixture of (Z)-3-hexen-1-yl acetate, (Z)-3-hexen-1-ol and benzaldehyde in a 4:1:1 ratio. This synthetic mixture elicited a similar attractant effect as the full natural blend from peach shoots as well as the bioactive fraction.  相似文献   

2.
1. Swarming males of Melolontha hippocastani are known to locate females that stay feeding within the host trees by orienting towards damage‐induced plant volatiles (green leaf volatiles) and a sex pheromone. Thus, volatiles emitted by freshly damaged leaves might indicate to a male the presence of currently feeding females. 2. The hypothesis was studied that volatiles from freshly damaged leaves are more attractive to males than volatiles from old damaged leaves. The odour bouquets of damaged leaves from three plant species that have been shown to attract male M. hippocastani in the field were analysed 10 min (fresh damage) and 1.5 h (old damage) after damaging, using coupled gas chromatography–mass spectrometry. The results showed clear differences between the bouquets: the bouquet of freshly damaged leaves of all species consisted of typical leaf aldehydes, i.e. hexanal, (Z)‐3‐hexenal, (Z)‐2‐hexenal, (E)‐2‐hexenal, the leaf alcohol (Z)‐3‐hexen‐1‐ol, and the corresponding acetate. One and a half hours after damage, aldehydes had almost vanished and (Z)‐3‐hexen‐1‐ol and (Z)‐3‐hexenyl acetate predominated; however males of M. hippocastani were equally attracted to traps baited with volatiles from old and freshly damaged leaves in field experiments. When traps were baited with synthetic volatile mixtures mimicking the bouquets of old and freshly damaged leaves, M. hippocastani males even preferred the old damage mixture. 3. Experiments addressing the role of individual green leaf volatiles revealed that only (Z)‐3‐hexen‐1‐ol was highly attractive while the other compounds tested individually were behaviourally inactive, however all tested compounds elicited comparable electrophysiological responses on male M. hippocastani antennae. 4. In analogy to the term aggregation kairomone used for feeding‐induced plant volatiles that attract both sexes of an insect, the term sexual kairomone is suggested to describe the novel function of (Z)‐3‐hexen‐1‐ol in the sexual communication of M. hippocastani.  相似文献   

3.
1 Behavioural responses of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), to volatiles emitted from solanaceous host plants (potato and tomato), a non‐host legume (soybean), and 13 synthetic blends or three individual chemicals emitted by potato plants were investigated in laboratory bioassays. 2 Both male and female CPB were attracted to volatiles emitted by mechanically damaged potato foliage, but not to mechanically damaged tomato foliage; CPB offered a choice between the two damaged solanaceous plants did not show a preference. 3 Among 16 odourous blends or individual chemical components of potato plant emissions tested, six blends were attractive, two were repellent, and eight elicited no preference in laboratory bioassays. Volatile blends containing relatively high amounts of the green leaf volatiles (E)‐2‐hexen‐1‐ol and (Z)‐3‐hexen‐1‐ol, or the sesquiterpene β‐ caryophyllene, were unattractive or repellent. Minimal blends attractive to CPB were comprised of (Z)‐3‐hexenyl acetate (±)‐linalool and methyl salicylate: the combination of all three chemicals elicited sexually dimorphic attraction of males; two component blends comprised of (Z)‐3‐hexenyl acetate and either (±)‐linalool and methyl salicylate attracted both sexes. Individual compounds were inactive. No significant difference was noted between two attractive blends, or an attractive synthetic blend vs. mechanically damaged potato foliage. 4 These results show that CPB are attracted to blends of specific chemicals emitted by their host plants and provide a basis for the use of plant attractants as a component of integrated management of pestiferous populations.  相似文献   

4.
Control of Grapholita molesta (Busck) (Lepidoptera: Tortricidae), a major pest of stone and pome fruits, is successfully achieved by mating disruption. Under these conditions, tools other than conventional pheromone dispensers are needed for flight monitoring. The objective of the present work was to determine whether plant volatiles synergize male G. molesta attraction to a suboptimal dose of synthetic sex pheromone. The plant blend (referred to as 5VB), a mixture of three green leaf volatiles [(Z)‐3‐hexenyl acetate, (Z)‐3‐hexenol, and (E)‐2‐hexenal] and two aromatics [benzaldehyde (BZA) and benzonitrile (BZN)], was added to the suboptimal pheromone dose (2 ng on filter paper) in log steps (up to 10 000× the pheromone dose) to test synergism of pheromone and plant blends. In addition, the effect of individual plant volatiles on male responses was investigated by adding to the suboptimal pheromone dose each of the four‐compound plant‐volatile blends, resulting from eliminating one volatile from the 5VB at a time, or each plant volatile alone. Flight behaviour and the time to reach the source were recorded. The 5VB alone was not attractive to G. molesta males, but at a ratio of 1:1 000 (Ph:5VB) or higher, the attractiveness of the suboptimal pheromone dose increased, to a level similar to that of the optimal pheromone dose (10 ng). All tested plant volatiles, except BZA, synergized the response to the pheromone when added individually, but only (Z)‐3‐hexenol and BZN did so to a level not significantly different from the Ph:5VB blend. Aromatics had a stronger effect than green leaf volatiles (GLVs), because their removal, but not the removal of GLVs, decreased landing responses. The addition of the 5VB decreased significantly the time males needed to reach the odour source. The observed enhanced male attraction to mixtures of pheromone and plant volatiles will facilitate the development of lures for G. molesta adult flight monitoring.  相似文献   

5.
Field tests were performed on a golf course and in an apple orchard to screen synthetic plant volatiles with respect to their attractiveness for the garden chafer, Phyllopertha horticola L. (Coleoptera: Scarabaeidae), and to investigate the possible application of plant volatiles for garden chafer control. The chemicals tested were green leaf volatiles (GLV), terpenoids, and phenylpropanoids. Funnel traps baited with the GLV (Z)‐3‐hexen‐1‐ol, 1‐hexanol (Z)‐3‐hexenal, and hexanal captured more P. horticola than unbaited controls. Furthermore, traps baited with all tested floral terpenoids (i.e., geraniol, geranyl acetate, citronellol, linalool, and nerol) and phenylpropanoids (i.e., eugenol, anethol, isoeugenol, eugenyl acetate, and isoeugenyl acetate) captured more garden chafers than controls. Different dispenser types loaded once with a mixture of (Z)‐3‐hexen‐1‐ol (50%), geraniol (11.5%), eugenol (27%), and 2‐phenylethyl propionate (11.5%) attracted P. horticola over a whole flight season. A commercially available membrane dispenser had the best properties, combining the highest number of captured beetles with a low release rate. A simple modification of the trap design, i.e., a reduction of the funnel outlet diameter, significantly reduced the capture of beneficial non‐target insects (Apoidea), without influencing the number of captured garden chafers. A mass trapping experiment in the apple orchard revealed that the use of attractant traps significantly reduced the percentage of apples disfigured by feeding holes of adult garden chafers (control area: 18.9%, test area: 11.6%). The possible application of synthetic plant volatiles in mass trapping and monitoring approaches for garden chafer control is discussed.  相似文献   

6.
Abstract The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious insect pests of tea plantations in mainland China. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography‐mass spectrometry (GC‐MS): (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐ethyl‐1‐hexanol, (E)‐ocimene, linalool, nonanol, (Z)‐butanoic acid, 3‐hexenyl ester, decanal, tetradecane, β‐caryophyllene, geraniol and hexadecane. In Y‐tube olfactometer tests, the following individual compounds were identified: (E)‐2‐hexenal, (E)‐ocimene, (Z)‐3‐hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)‐3‐hexen‐1‐ol and (E)‐2‐hexenal at a 1 : 1 : 1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐penten‐1‐ol, (E)‐2‐pentenal, pentanol, hexanol and 1‐penten‐3‐ol. In tea fields, the bud‐green sticky board traps baited with blend 2, (E)‐2‐hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, followed by (E)‐2‐hexenal and hexane. Placing sticky traps baited with blend 2 or (E)‐2‐hexenal in the tea fields significantly reduced leafhopper populations. Our results indicate that the bud‐green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.  相似文献   

7.
Male Melolontha cockchafers are known to use green leaf volatiles induced by female feeding on host plants for their mate location. Earlier studies of the response of the European cockchafer, Melolontha melolontha L. (Coleoptera: Scarabaeidae), to different green leaf aldehydes, alcohols, and acetates revealed that only green leaf alcohols were attractive to males in the field. Females were not attracted at all by these volatiles. Here, we present a study that aimed to elucidate the structure–activity relationships of aliphatic alcohols. Both behavioural and physiological responses were studied in male and female M. melolontha by field tests and electroantennography. The compounds tested were saturated aliphatic alcohols with chain lengths between five and eight carbon atoms. Furthermore, the cockchafer's response to six‐carbon alcohols with (E)‐2‐, (E)‐3‐, (Z)‐2‐, (Z)‐3‐, and (Z)‐4‐configurated double bonds was tested. All compounds elicited dose‐dependent responses on the antennae of both sexes. In general, males showed a stronger normalized EAG response to the stimuli than females. However, only the naturally occurring six‐carbon alcohols, i.e., 1‐hexanol (E)‐2‐, (Z)‐3, and (E)‐3‐hexen‐1‐ol were attractive to M. melolontha males in the field. Females were not attracted to any of the tested compounds, confirming previous results on the olfactory orientation of Melolontha cockchafers.  相似文献   

8.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

9.
This study investigated volatiles from Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae) leaves that attracted Heortia vitessoides Moore (Lepidoptera: Crambidae). Volatiles from young and old A. sinensis leaves were identified and quantified by gas chromatography–mass spectrometry and gas chromatography‐electroantennogram detection. Both wind tunnel bioassays and field tests were conducted to measure the attraction of adults to synthetic blends of volatiles from leaves of different maturations. Consistent electroantennographic activity was obtained for nine and three compounds from headspace collections of young and old A. sinensis leaves, respectively. Qualitative and quantitative differences were found among two odour profiles. In wind tunnel experiments, the fresh young leaves proved to be more attractive to females than old leaves. A nine‐component mixture, including hexanal, limonene, 2‐hexanol, octanal, (Z)‐3‐hexenyl acetate, (Z)‐3‐hexen‐1‐ol, nonanal, decanal, and 2,6,10‐trimethyl‐dodecane (with a ratio of 2:16:9:4:63:100:13:10:5) from young leaves attracted moths significantly more than the three‐component mixture of nonanal, decanal, and 2,6,10‐trimethyl‐dodecane (with a ratio of 11:14:26) from old leaves. Further subtractive bioassays conducted in the wind tunnel showed that both the complete nine‐component mixture and a subtracted four‐component mixture of hexanal, (Z)‐3‐hexenyl acetate, nonanal, and decanal (with a ratio of 2:63:13:10) elicited equivalent responses in females. All components in the four‐component blend were essential for optimal attraction. In a field trial using the nine‐ and four‐component blends, more moths were captured using both blends than in traps baited with hexane only. Our study indicates that the odour blends of young leaves play an important role in H. vitessoides host plant recognition. The mechanisms behind host recognition and age‐dependent changes in leaf chemistry are discussed.  相似文献   

10.
Electroantennogram (EAG), Y‐tube olfactometer, and wind tunnel bioassays were conducted to test the electrophysiological and behavioral responses of Cryptorrhynchus lapathi L. (Coleoptera: Curculionidae) to six individual volatiles and seven essential oils (compounded volatiles). The aim of this study was to select effective plant compounds that can be used in the development of semiochemical‐based push–pull methods for the control of this harmful insect. Male and female C. lapathi displayed strong EAG responses to linoleic acid, α‐pinene, (Z)‐3‐hexen‐1‐ol, geraniol, turpentine oil, and salicylaldehyde. Y‐tube olfactometer assays indicated that salicylaldehyde and α‐pinene elicited strong repellent effects on female C. lapathi. Linoleic acid and (Z)‐3‐hexen‐1‐ol showed greater luring effects on male and female C. lapathi compared with the control. Turpentine oil was stronger repellent, and geraniol showed stronger luring effects on male C. lapathi than the control. Wind tunnel assays with both male and female C. lapathi indicated that salicylaldehyde, α‐pinene, and turpentine oil elicited repellent effects compared with the control. Linoleic acid, (Z)‐3‐hexen‐1‐ol, and geraniol were stronger lures of both male and female C. lapathi than the control. These results provide a basis for the further development of C. lapathi luring and repellent agents.  相似文献   

11.
梨小食心虫化学通信中的信息物质   总被引:4,自引:0,他引:4  
陆鹏飞  黄玲巧  王琛柱 《昆虫学报》2010,53(12):1390-1403
梨小食心虫Grapholitha molesta Busck是我国北方果区发生的重要害虫。当前对该虫的防治主要依赖化学农药, 但引起的害虫抗药性、 杀伤天敌和环境污染等问题非常严重。食心虫自身的信息素、 寄主/非寄主的他感化学物质对于调节其配偶选择和寄主定位起着至关重要的作用, 基于信息化学物质的害虫管理策略为果园食心虫的治理提供了新的途径。本文综述了国内外有关梨小食心虫化学信息物质研究进展, 包括雌蛾释放的性信息素组分及对雄、 雌两性的引诱, 雄蛾释放的信息素, 利用性信息素的迷向研究, 寄主植物挥发性引诱物质的鉴定和筛选, 以及梨小食心虫寄主转换机制等方面的研究现状和存在的问题。具体来说, 雌蛾的性信息素包括顺-8-十二碳烯醋酸酯、反-8-十二碳烯醋酸酯、顺-8-十二碳烯-1-醇和十二碳-1-醇, 各个组分的比例在地理种群间存在变异。在室内, 通过行为试验证实两种醋酸酯对雄蛾的引诱是必不可少的, 微量的顺-8-十二碳烯-1-醇对二元组分起到增效作用。在田间, 上述3种物质组成的诱芯具有较强的活性; 由此开发的性信息素迷向技术(人工迷向丝、 可喷施的微胶囊和蜡滴)被用于梨小食心虫交配干扰, 取得了很好的效果。梨小食心虫最主要的寄主植物桃梢挥发物包括22种化合物, 其中绿叶挥发物占到50%, 行为生测证实6~8个碳原子的物质是主要的活性化合物。顺-3-己烯丁酸酯、顺-3-己烯醇、反-2-己烯醛、苯甲醛和苯甲腈的五组分混合物, 其引诱力与天然桃梢挥发物相当。通过钙成像试验证实, 尽管苯甲腈在桃梢天然挥发物中仅占0.14%, 但雌蛾对含有该物质的混合物有显著趋性, 该物质对梨小食心虫成功识别寄主具有重要意义。最后对梨小食心虫信息化学物质下一步的研究和应用前景进行了探讨。  相似文献   

12.
Attraction of many gravid female herbivore insects to suitable host plants is mediated largely by olfactory cues. Behaviorally, synergism among odor mixtures constituents underlies this attraction in some systems. Yet, the representation of synergistic odor-mixture effects is unknown in the antennal lobe, the first processing center for olfactory information in insect brains. Using both behavioral and physiological data we demonstrate that in the oriental fruit moth, Cydia (Grapholita) molesta, a minor constituent of a plant-derived synthetic mixture plays a key role in behavioral discrimination and in neural representation of mixtures. Behaviorally, minute amounts of benzonitrile added to an unattractive 4-compound mixture resulted in a bioactive 5-compound mixture that was as attractive to mated female moths as the natural blend. Physiologically, the bioactive benzonitrile-containing mixture elicited strong activation of one additional, new type of glomerulus that showed specific synergisms for this mixture. The specific pattern of activated glomeruli elicited by the addition of benzonitrile demonstrates a physiological correlate to the behaviorally observed synergism, and emphasizes the key role of a minor component of a complex mixture. While minor constituents of mixtures are often overlooked, they may, as conclusively documented here, be determinant for successful recognition and behavioral discrimination of suitable host plants by herbivore insects.  相似文献   

13.
Brontispa longissima (Gestro) (Coleoptera: Hispidae) is a new invasive pest in China that has caused severe economic damage to palm trees (Arecaceae, Palmae). The response of this beetle to coconut palm (Cocos nucifera) leaf volatiles is investigated in laboratory bioassays. Both sexes are attracted to a mixture of β‐myrcene, (?)‐limonene and E‐2‐hexen‐1‐ol (1 : 6 : 1), which are key components of coconut palm leaf volatiles. A blend of β‐myrcene and (?)‐limonene (0.7 : 1–1 : 0.7) in low amounts (100 ng) elicits aggregation and oviposition in females. Chemical analyses of food‐deprived, gravid female B. longissima show high concentrations of β‐myrcene and (?)‐limonene in their accessory glands, suggesting that female beetles sequester both compounds and release them during oviposition.  相似文献   

14.
The release rhythm of volatiles is an important physiological characteristic of plants, because the timing of release can affect the function of each particular volatile compound. However, most studies on volatiles release rhythms have been conducted using model plants, rather than crop plants. Here, we analyzed the variations in volatile compounds released from healthy and leafminer (Liriomyza huidobrensis)-infested kidney bean (Phaseolus vulgaris), an important legume crop plant, over a 24 h period. The constituents of the volatiles mixture released from plants were analyzed every 3 h starting from 08:00. The collected volatiles were identified and quantified by gas chromatography–mass spectrometry. Undamaged kidney bean plants released trace amounts of volatiles, with no obvious release rhythms. However, leafminer-damaged plants released large amounts of volatiles, in two main peaks. The main peak of emission was from 17:00 to 20:00, while the secondary peak was in the early morning. The terpene volatiles and (Z)-3-hexenyl acetate showed similar rhythms as that of total volatiles. However, the green leaf volatile (Z)-3-hexen-ol was emitted during the night with peak emission in the early morning. These results give us a clear picture of the volatiles release rhythms of kidney bean plants damaged by leafminer.Keywords : green leaves volatiles, Liriomyza huidobrensis, rhythm, terpene, (Z)-3-hexen-ol  相似文献   

15.
Plants infested with a single herbivore species can attract natural enemies through the emission of herbivore‐induced plant volatiles (HIPVs). However, under natural conditions plants are often attacked by more than one herbivore species. We investigated the olfactory response of a generalist predators Macrolophus caliginosus to pepper infested with two‐spotted spider mites, Tetranychus urticae, or green peach aphid, Myzus persicae, vs. plants infested with both herbivore species in a Y‐tube olfactometer set up. In addition, the constituents of volatile blends from plants exposed to multiple or single herbivory were identified by gas chromatography‐mass spectrometry (GC‐MS). The mirid bugs showed a stronger response to volatiles emitted from plants simultaneously infested with spider mites and aphids than to those emitted from plants infested by just one herbivore, irrespective of the species. Combined with results from previous studies under similar conditions we infer that this was a reaction to herbivore induced plant volatiles. The GC‐MS analysis showed that single herbivory induced the release of 22 additional compounds as compared with the volatiles emitted from clean plants. Quantitative analyses revealed that the amount of volatile blends emitted from pepper infested by both herbivores was significantly higher than that from pepper infested by a single herbivore. Moreover, two unique substances were tentatively identified (with a probability of 94% and 91%, respectively) in volatiles emitted by multiple herbivory damaged plants: α‐zingiberene and dodecyl acetate.  相似文献   

16.
1 Seventeen non‐host angiosperm bark volatiles, seven of which are antennally active to Ips pini (Say), the pine engraver (PE), were tested for their ability to disrupt the response of the PE to pheromone‐baited traps. 2 Four green leaf volatiles (GLVs) were tested [1‐hexanol (Z)‐3‐hexen‐1‐ol, hexanal, and (E)‐2‐hexenal]. None had any disruptive effect singly, as a group or in all possible blends based on functional groups, despite the fact that the two aldehydes were antennally active. These compounds may have, in some instances, actually masked the disruptive effect of other compounds. The PE thus differs in its response from other Scolytidae, including other Ips spp. 3 Eight non‐host volatiles that were antennally active to other bark beetles, but not to PEs, had no disruptive effect, validating the use of coupled gas chromatographic‐electroantennographic detection analyses to detect compounds with potential behavioural activity. 4 The bicyclic spiroacetal conophthorin, (E)‐7‐methyl‐1,6‐dioxaspiro[4.5]decane, was disruptive when tested alone. When blends of two aldehydes [salicylaldehyde and nonanal] plus an alcohol and a phenol [benzyl alcohol and guaiacol] were combined with conophthorin, an enhanced disruptive effect was revealed. No single compound, other than conophthorin, disrupted the pheromone‐positive response and no blend that did not contain conophthorin was consistently disruptive to both sexes. Conophthorin seems to be a critical component in the non‐host angiosperm message for I. pini during its host selection phase. 5 Combination of the repellent synomones, verbenone and ipsenol, with the five disruptive non‐host volatiles may provide a potent treatment to protect trees, logs or stands from attack by the PE.  相似文献   

17.
18.
The Annona fruit borer, Cerconota anonella Sepp., is a serious agricultural pest in many tropical areas of the world. The identification of an attractant for male C. anonella could offer new methods for pest detection and control. A mixture of compounds extracted from female C. anonella elicited antennal depolarization in the male borer. These compounds were identified as octadecanal, 1‐octadecanol, octadecyl acetate, (Z)‐octadec‐9‐enal (Z9‐18:Ald), (Z)‐octadec‐9‐en‐1‐ol (Z9‐18:OH) and [(Z)‐octadec‐9‐enyl] acetate (Z9‐18:Ac) by one‐ and two‐dimensional gas chromatography–mass spectrometry. In laboratory bioassays, synthetic individual compounds as well as synthetic mixtures were found to be attractive to males. In addition, field tests using Delta traps with 1 mg of the ternary mixture composed of Z9‐18:Ac, Z9‐18:Ald and Z9‐18:OH in the ratio of 1 : 3 : 5 caught as many males as traps containing virgin females. The ternary mixture of Z9‐18:Ac, Z9‐18:Ald and Z9‐18:OH was identified as attractant to C. anonella males and can be used to detect and control populations of this insect in Annonaceae plantations.  相似文献   

19.
Herbivore-induced plant volatiles (HIPVs) emitted from lima bean leaves infested with the two-spotted spider mites Tetranychus urticae strongly attract the predatory mites Neoseiulus californicus. Among these HIPVs, methyl salicylate and linalool can attract the predators. Three green-leaf volatiles (GLVs) of (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate and (E)-2-hexenal, found in the odor blends from T. urticae-infested leaves and physically damaged leaves, can also attract the predators. To search for a strong predator attractant, the olfactory responses of N. californicus to each synthetic compound or their combinations were investigated in a Y-tube olfactometer. When presented a choice between a mixture of the five compounds (i.e. the two HIPVs and the three GLVs) and T. urticae-infested leaves, N. californicus did not discriminate between these odor sources. The same trend was observed when either a mixture of the two HIPVs or methyl salicylate vs. T. urticae-infested leaves were compared. In contrast, the predators preferred T. urticae-infested leaves to linalool, each of the three GLVs, or a mixture of the three GLVs. These results indicated that methyl salicylate is a strong predator attractant, and its potential attractiveness almost equaled that of the blend of HIPVs from T. urticae-infested leaves.  相似文献   

20.
In many herbivorous insects, the attraction to suitable host plants is in part mediated by similar olfactory cues from different host plants. This study investigated the electrophysiological and behavioral responses of female Maruca vitrata Fabricius (Lepidoptera: Crambidae) to floral volatiles from two host plants, Vigna unguiculata (L.) Walpers and Lablab purpureus (L.) Sweet (both Fabaceae). Qualitative and quantitative differences were found between the odor profiles of two host plants by gas chromatography‐mass spectrometry (GC‐MS). Nine electroantennography‐active compounds were detected in the headspace collections of the two host plants by means of coupled GC‐electroantennographic detection. In a wind tunnel, female behaviors (upwind flight and source approach) were not affected by stimuli or their interaction with host plants, but the behaviors were influenced by host plants. A mixture of the nine bioactive compounds, including limonene, 1,3‐diethylbenzene, benzaldehyde, acetophenone, 4‐ethylbenzaldehyde, 1‐(4‐ethylphenyl)‐ethanone, 2‐methyl‐3‐phenylpropanal, 1H‐indol‐4‐ol, and 1,1′‐(1,4‐phenylene)bis‐ethanone mimicking L. purpureus (in a ratio of 0.4:9.7:2.4:5.7:78.1:4.8:100:0.6:30.3) attracted significantly more females approaching the sources compared with the mixture of compounds mimicking V. unguiculata (in a ratio of 0.3:1.4:1.6:3.7:50.8:3.2:100:4.2:16.7). Further bioassays revealed that a subtractive 4‐component blend [limonene, 1,3‐diethylbenzene, 4‐ethylbenzaldehyde, and 1‐(4‐ethylphenyl)‐ethanone in a ratio of 0.4:9.7:78.1:4.8] was essential for maximal attraction. Our study suggested that female M. vitrata might use similar odors from V. unguiculata and L. purpureus to locate suitable hosts and that an artificial lure, containing the major floral volatiles released by the two host plants, might be useful in exploring efficiency monitoring and/or control strategies of this moth in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号