共查询到20条相似文献,搜索用时 15 毫秒
1.
Kenzo Yamanaka Akira Hasegawa Ryoji Sawamura Shoji Okada 《Biological trace element research》1989,21(1):413-417
DNA damage induced by administration of dimethylarsinic acid (DMAA) to rats and mice was investigated. At 12 h after administration of DMAA, DNA single-strand breaks were induced markedly in lung. The majority of dimethylarsine, one of the main metabolites, in the expired air was excreted within 6–18 h after administration of DMAA to rats. In vitro experiments using nuclei isolated from lung of mice indicated that DNA strand breaks were caused by dimethylarsine. Furthermore, the strand breaks after exposure to dimethylarsine were reduced in the presence of catalase and/or superoxide dismutase. These results strongly suggest that the strand breaks are induced not by dimethylarsine itself but by active oxygen, e.g., O 2 ? and ·OH, produced both by dimethylarsine and molecular oxygen. When DNA was exposed to dimethylarsine, thiobarbituric acid (TBA)-reactive intermediates andcis-thymine glycol were produced. Dimethylarsine appears to induce DNA damage by the mechanism similar to the damage produced by ionizing radiation. 相似文献
2.
We have tested the ability of T4 DNA ligase to rejoin radiation-induced DNA strand breaks in living hamster cells (CHO-K1, EM9, xrs-5). T4 DNA ligase was introduced into cells by electroporation prior to x-irradiation. Single- and double-strand breaks were measured by the alkaline comet assay technique, and double-strand breaks (DSBs) were evaluated by the pulsed-field gel electrophoresis method. In the comet assay, the three cell lines showed reduced tail moments following pretreatment with T4 DNA ligase, both directly after irradiation and after repair incubation for 4 h. Similarly, the results obtained from pulsed-field gel electrophoresis showed reduced DSB frequencies after pretreatment with T4 DNA ligase. We conclude that exogeneous T4 ligase contributes to rejoining of radiation-induced strand breaks. 相似文献
3.
DNA double strand breaks (DSBs) are among the most dangerous lesions that can occur in the genome of eukaryotic cells. Proper repair of chromosomal DSBs is critical for maintaining cellular viability and genomic integrity and, in multi-cellular organisms, for suppression of tumorigenesis. Thus, eukaryotic cells have evolved specialized and redundant molecular mechanisms to sense, respond to, and repair DSBs. In this chapter, we provide an overview of the progress that has been made over the last decade in elucidating the identity and function of components that participate in the cellular response to chromosomal DSBs. Then, we discuss, in more depth, the response to DSBs that occur in the context of the V(D)J recombination and IgH class switch recombination reactions that occur in cells of the lymphocyte lineage. 相似文献
4.
5.
The amino acid histidine was found to increase the toxicity of H2O2 in cultured mammalian cells. Histidine also augmented the level of DNA single strand breaks (SSB) detectable in cells exposed to the oxidant and, in addition, resulted in the appearance of DNA double strand breaks (DSB), a lesion which is not produced by H2O2 alone. 相似文献
6.
Biton S Gropp M Itsykson P Pereg Y Mittelman L Johe K Reubinoff B Shiloh Y 《DNA Repair》2007,6(1):128-134
Ataxia-telangiectasia (A-T) is a multi-system genomic instability syndrome that is caused by loss or inactivation of the ATM protein kinase. ATM is largely nuclear in proliferating cells, and activates an extensive network of pathways in response to double strand breaks (DSBs) in the DNA by phosphorylating key proteins in these pathways. The prominent symptom of A-T is neuronal degeneration, making the elucidation of ATM's functions in neurons essential to understanding the disease. It has been suggested that ATM is cytoplasmic in neurons and functions in processes that are not associated with the DNA damage response. Recently we showed that in human neuron-like cells obtained by in vitro differentiation of neuroblastomas, ATM was largely nuclear and mediated the DSB response as in proliferating cells. We have now extended these studies to two additional model systems: neurons derived from human embryonic stem cells, and cortical neurons derived from neural stem cells. The results substantiate the notion that ATM is nuclear in human neurons and mediates the DSB response, the same as it does in proliferating cells. We present here unique and powerful model systems to further study the ATM-mediated network in neurons. 相似文献
7.
Leduc F Faucher D Bikond Nkoma G Grégoire MC Arguin M Wellinger RJ Boissonneault G 《PloS one》2011,6(2):e17353
Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage. 相似文献
8.
Method for detecting DNA strand breaks in mammalian cells using the Deinococcus radiodurans PprA protein 总被引:1,自引:0,他引:1
In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields. 相似文献
9.
Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks 总被引:12,自引:0,他引:12
Chen BP Chan DW Kobayashi J Burma S Asaithamby A Morotomi-Yano K Botvinick E Qin J Chen DJ 《The Journal of biological chemistry》2005,280(15):14709-14715
DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis. 相似文献
10.
11.
Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. 总被引:55,自引:0,他引:55
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks. 相似文献
12.
Ataxia-telangiectasia (A–T) has for a long time stood apart from most other human neurodegenerative syndromes by the characteristic failure of cells derived from these patients to properly repair DNA damage-induced by ionizing radiation. The discovery of mutations in the ATM gene as being the underlying cause for A–T and the demonstration that the ATM protein functions as a DNA damage-responsive kinase has defined current research focusing on decoding how the cell responds to genotoxic stress. Yet, despite significant advances in delineating the cellular DNA damage response pathways coordinated by ATM, very little headway has been made toward understanding how loss of ATM leads to progressive cerebellar ataxia and whether this can be attributed to an underlying defect in DNA double strand break repair (DSBR). Since its identification, A–T has been used as the archetypal model for how a deficiency in DNA repair affects both the development and maintenance of the nervous and immune systems in humans as well as contributing to the process of tumourigenesis. However, following the growing availability and cost effectiveness of next generation sequencing technologies, the increasing recognition of novel human disorders associated with abnormal DNA repair has demonstrated that the neuropathology typified by A–T is an ‘exception’ rather than the ‘rule’. As a consequence, this throws into doubt the longstanding hypothesis that the neurodegeneration seen in A–T is due to the progressive loss of damaged neurons that have acquired toxic levels of unrepaired DNA lesions over time. Therefore, this review aims to address the question: Is defective DNA double strand break repair an underlying cause of neurodegeneration? 相似文献
13.
14.
Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 °C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells. 相似文献
15.
16.
DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini.
下载免费PDF全文

In recent years two mechanisms have been proposed for the production of DNA strand breaks in cells undergoing oxidative stress: (i) DNA attack by OH radical, produced by Fenton reaction catalyzed by DNA-bound iron; and (ii) DNA attack by calcium-activated nucleases, due to the increase of cytosolic and nuclear calcium induced by oxidative stress. We set out to investigate the participation of the former mechanism by detecting and quantifying 3'-phosphoglycolate, a 3' DNA terminus known to be formed by OH radical attack to the deoxyribose moiety, followed by sugar ring rupture and DNA strand rupture. These structures were found in DNA of monkey kidney cells exposed to hydrogen peroxide, iron nitrilotriacetate or ascorbate, all species known to favor a cellular pro-oxidant status. The method employed to measure 3' phosphoglycolate was the 32P-postlabeling assay. Repair time course experiments showed that it takes 10 h for 3'-phosphoglycolate to be removed from DNA. It was found that the DNA of both control cells and cells exposed to hydrogen peroxide had a very poor capacity of supporting in vitro DNA synthesis, catalyzed by DNA polymerase I. If the DNA was previously incubated with exonuclease III, an enzyme able to expose 3'-OH primers by removal of 3'-phosphoglycolate and 3'-phosphate termini the in vitro synthesis was substantially increased. This result shows that either of these termini are present at the break and that 3'-hydroxyl termini are virtually absent. At least 25% of the strand breaks exhibited 3'-phosphoglycolate termini as determined by the 32P-postlabeling assay, but due to the characteristic of the method this percentage is likely to be higher. These results favor the hypothesis that an oxidative agent generated by Fenton reaction is responsible for DNA strand breakage in cells undergoing oxidative stress. 相似文献
17.
Increased lymphocyte DNA strand breaks in rubber workers 总被引:10,自引:0,他引:10
OBJECTIVE: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. SUBJECTS AND METHODS: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. RESULTS: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1. 77microm (1.64-1.90) versus 1.52microm (1.36-1.71), P=0.04]. Both smoking [1.93microm (1.74-2.13) versus 1.59microm (1.47-1.71), P=0. 003] and alcohol drinking [2.21microm (1.87-2.62) versus 1.63microm (1.53-1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0. 013) was associated with larger tail moment, whereas age and gender had no effect. CONCLUSIONS: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage. 相似文献
18.
Chang Qi Zhu Tai Hing Lam Chao Qiang Jiang Ba Xong Wei Qi Rong Xu Yue Hua Chen 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2000,470(2)
Objective: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. Subjects and Methods: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. Results: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1.77 μm (1.64–1.90) versus 1.52 μm (1.36–1.71), P=0.04]. Both smoking [1.93 μm (1.74–2.13) versus 1.59 μm (1.47–1.71), P=0.003] and alcohol drinking [2.21 μm (1.87–2.62) versus 1.63 μm (1.53–1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0.013) was associated with larger tail moment, whereas age and gender had no effect. Conclusions: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage. 相似文献
19.
20.
I Furuno T Yada H Matsudaira T Maruyama 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1979,36(6):639-648
Induction and repair of DNA breaks following irradiation with NIRS cyclotron neutrons were studied in cultured mammalian cells (L5178Y) in comparison to those following gamma-rays. The yield of the total single-strand breaks, 3'OH terminals and sites susceptible to S1 endonuclease following fast neutrons was found to be approximately 50 per cent of that following gamma-irradiation. On the other hand, the yield of double-strand breaks was slightly higher after fast neutrons than after gamma-rays. The percentage of the total single-strand breaks remaining unrejoined at 3 hours after post-irradiation incubation was found to be distinctly higher after the fast neutrons than after gamma-rays. The neutron-induced damage appears to carry a higher proportion of alkali-labile lesions compared to gamma-rays. It was concluded that the increase in the yield of double-strand breaks and of unrejoinable breaks is responsible for a high r.b.e. of the cyclotron neutrons. 相似文献