首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myotoxic phospholipases A2 of class II are commonly found in the venoms of crotalid snakes. As an approach to understanding their structure-activity relationship, diverse natural variants have been characterized biochemically and pharmacologically. This study describes a new myotoxic phospholipase A2 homologue, isolated from the venom of Atropoides (Bothrops) nummifer from Costa Rica. A. nummifer myotoxin 1 is a basic protein, with an apparent subunit molecular mass of 16 kDa, which migrates as a dimer in sodium dodecylsulfate-polyacrylamide gel electrophoresis under nonreducing conditions. It is strongly recognized by antibodies generated against Bothrops asper myotoxin II, by enzyme-immunoassay. The toxin induces rapid myonecrosis upon intramuscular injection in mice (evidenced by an early increase in plasma creatine kinase activity), and significant edema in the footpad assay. It also displays cytolytic activity upon cultured murine endothelial cells. The toxin (up to 50 microg) has no detectable phospholipase A2 activity on egg yolk phospholipids, and does not show an anticoagulant effect on sheep platelet-poor plasma in vitro. N-terminal sequence determination (53 amino acid residues) demonstrated that A. nummifer myotoxin II is a new Lys49 variant of the family of myotoxic, class II phospholipases A2. Sequence comparison with other phospholipases A2 revealed Asn53 as a novel substitution. In addition, this myotoxin is the first Lys49 variant presenting Asn in its N-terminus. Consequently, these findings suggest that neither Ser1 or Lys53, usually found in this family of proteins, are essential amino acid residues for their myotoxic, cytolytic, or edema-inducing effects.  相似文献   

2.
1. In order to investigate the distribution of myotoxin isoforms in the snake Bothrops asper, venoms from individual specimens were analyzed by a cathodic electrophoretic system for basic proteins under native conditions. 2. The electrophoretic system resolved at least five bands with slight differences in mobility, corresponding to the fastest migrating proteins in the venom. The identity of the bands was confirmed by immunoblotting, using a rabbit anti-myotoxin serum. 3. There were clear differences in the individual patterns of myotoxin isoform expression, both in specimens from the Atlantic and Pacific regions of Costa Rica. Some individuals possessed all five variants. 4. In agreement with previous reports, the venoms of ten newborn (less than 10 days of age) specimens completely lacked myotoxin bands, indicating an ontogenetic regulation in the expression of these toxins in B. asper. 5. One of the bands, corresponding to the lysine-49 phospholipase myotoxin II, was the only isoform present in all individuals studied, suggesting a possible selective pressure for the conservation of this type of protein in the venom of B. asper.  相似文献   

3.
A comparative study was performed on the venoms of the crotaline snake Atropoides nummifer from Guatemala and Honduras. SDS-polyacrylamide gel electrophoresis, under reducing conditions, revealed a highly similar pattern of these venoms, and between them and the venom of the same species from Costa Rica. Similar patterns were also observed in ion-exchange chromatography on CM-Shephadex C-25, in which a highly basic myotoxic fraction was present. This fraction was devoid of phospholipase A2 activity and strongly reacted, by enzyme-immunoassay, with an antiserum against Bothrops asper myotoxin II, a Lys-49 phospholipase A2 homologue. A basic myotoxin of 16 kDa was isolated to homogeneity from the venom of A. nummifer from Honduras, showing amino acid composition and N-terminal sequence similar to those of Lys-49 phospholipase A2 variants previously isolated from other crotaline snake venoms. Guatemalan and Honduran A. nummifer venoms have a qualitatively similar toxicological profile, characterized by: lethal; hemorrhagic; myotoxic; edema-forming; coagulant; and defibrinating activities, although there were significant quantitative variations in some of these activities between the two venoms. Neutralization of toxic activities by two commercially-available antivenoms in the region was studied. Polyvalent antivenom produced by Instituto Clodomiro Picado was effective in the neutralization of: lethal; hemorrhagic; myotoxic; coagulant; defibrinating; and phospholipase A2 activities, but ineffective against edema-forming activity. On the other hand, MYN polyvalent antivenom neutralized: hemorrhagic; myotoxic; coagulant; defibrinating; and phospholipase A2 activities, albeit with a lower potency than Instituto Clodomiro Picado antivenom. MYN antivenom failed to neutralize lethal and edema-forming activities of A. nummifer venoms.  相似文献   

4.
Snake venom myotoxic phospholipases A(2) contribute to much of the tissue damage observed during envenomation by Bothrops asper, the major cause of snake bites in Central America. Several myotoxic PLA(2)s have been identified, but their mechanism of myotoxicity is still unclear. To aid in the molecular characterization of these venom toxins, the complete open reading frames encoding two Lys(49) and one Asp(49) basic PLA(2) myotoxins from the Central American snake B. asper (terciopelo) were obtained by cDNA cloning from venom gland poly-adenylated RNA. The amino acid sequence deduced from the myotoxins II and III open reading frames corresponded in each case to one of the reported amino acid sequence isoforms. The sequence of a new myotoxin IV-like sequence (MT-IVa) contains conservative Val-->Leu(18) and Ala-->Val(23) substitutions when compared with the reported N-terminus of the native myotoxin IV, suggesting minor isoform variations among specimens of a single species. Sequence alignment studies indicated significant (>75% sequence identity) identities with other crotalid venom Lys(49) PLA(2)s, particularly bothropstoxin I/Ia isoforms of B. jararacussu and myotoxin II of B. asper.  相似文献   

5.
The effect of four myotoxins isolated from Bothrops snake venoms on the release of peroxidase trapped in large multilamellar liposomes was studied and correlated to their phospholipase A2, myotoxic and anticoagulant activities. The four myotoxins affected negatively-charged liposomes in a dose-dependent way, having no effect on positively-charged liposomes. Conditions that inhibited phospholipase A2 activity, i.e., substitution of calcium by EDTA, reduced liposome-disrupting activity of Bothrops asper myotoxin I and Bothrops atrox myotoxin, both of which have high phospholipase A2 activity, but did not affect the action of B. asper myotoxin II and Bothrops moojeni myotoxin II, which have extremely low phospholipase A2 activity. However, all myotoxins disrupted to some extent negatively-charged liposomes under conditions where phospholipase A2 activity was abolished. Since these toxins behave as amphiphilic proteins in charge-shift electrophoresis, it is suggested that membrane-disorganization is at least partially due to a non-enzymatic penetration and alteration of bilayers. There was no strict correlation between liposome-disrupting activity and myotoxicity in vivo. Thus, although both effects probably depend on the toxins' ability to disturb membranes, it is likely that variation in complexity between skeletal muscle plasma membrane and liposome bilayers are the basis for this difference. The anticoagulant effect seems to depend on the ability of the toxins to enzymatically degrade phospholipids, since only B. asper myotoxin I and B. atrox myotoxin prolonged the plasma recalcification time.  相似文献   

6.
In order to probe the role of Asp-49 in the active site of porcine pancreatic phospholipase A2 two mutant proteins were constructed containing either Glu or Lys at position 49. Their enzymatic activities and their affinities for substrate and for Ca2+ ions were examined in comparison with the native enzyme. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions in particular for the lysine mutant but the affinity for substrate analogues is hardly affected. Extensive purification of [Lys49]phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein which was 4000 times less active than the basic [Asp49]phospholipase A2 from this venom. Inhibition studies with p-bromophenacyl bromide showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself is inactive. The results obtained both with the porcine pancreatic phospholipase A2 mutants and with the native venom enzymes show that Asp-49 is essential for the catalytic action of phospholipase A2.  相似文献   

7.
In order to analyze its structure-function relationships, the complete amino acid sequence of myotoxin II from Atropoides (Bothrops) nummifer from Costa Rica was determined. This toxin is a Lys49-type phospholipase A(2) (PLA(2)) homologue, devoid of catalytic activity, structurally belonging to class IIA. In addition to the Asp49 --> Lys change in the (inactive) catalytic center, substitutions in the calcium-binding loop suggest that its lack of enzymatic activity is due to the loss of ability to bind Ca(2+). The toxin occurs as a homodimer of basic subunits of 121 residues. Its sequence has highest similarity to Lys49 PLA(2)s from Cerrophidion, Trimeresurus, Bothrops and Agkistrodon species, which form a subfamily of proteins that diverged early from Asp49 PLA(2)s present in the same species, as shown by phylogenetic analysis. The tertiary structure of the toxin was modeled, based on the coordinates of Cerrophidion godmani myotoxin II. Its exposed C-terminal region 115-129 shows several differences in comparison to the homologous sequences of other Lys49 PLA(2)s, i.e. from Agkistrodon p. piscivorus and Bothrops asper. Region 115-129 of the latter two proteins has been implicated in myotoxic activity, on the basis of the direct membrane-damaging of their corresponding synthetic peptides. However, peptide 115-129 of A. nummifer myotoxin II did not exert toxicity upon cultured skeletal muscle cells or mature muscle in vivo. Differences in several amino acid residues, either critical for toxicity, or influencing the conformation of free peptide 115-129 from A. nummifer myotoxin II, may account for its lack of direct membrane-damaging properties.  相似文献   

8.
Two basic myotoxic phospholipases A2 were purified to homogeneity from the venom of Bothrops godmani from Costa Rica by ion-exchange chromatography on CM-Sephadex. They have molecular weights of 14,300 (myotoxin I) and 13,400 (myotoxin II) and isoelectric points of 8.2 (myotoxin I) and 8.9 (myotoxin II). They behave as amphiphilic proteins in charge-shift electrophoresis and have similar amino acid compositions. Both toxins induce drastic myotoxic effects when injected in the gastrocnemius muscle of mice and induce release of peroxidase trapped in negatively charged liposomes. In addition, myotoxin I has high phospholipase A2 activity and is anticoagulant at doses higher than 0.3 microgram/ml, whereas myotoxin II has a very low phospholipase A2 activity and exerts anticoagulant effect only at concentrations higher than 50 micrograms/ml. Immunochemical data indicate that both toxins are immunologically related to Bothrops asper myotoxins, although B. godmani myotoxin II gives a stronger cross-reactivity when tested with antisera raised against B. asper myotoxins I and II.  相似文献   

9.
A new phospholipase A(2) (PLA(2))-inhibitory protein was isolated from the plasma of Atropoides nummifer, a crotaline snake from Central America. This inhibitor was named AnMIP, given its ability to neutralize the activity of basic PLA(2) myotoxins of its own and related venoms. The cDNA of AnMIP was cloned and sequenced, showing that it belongs to the alpha group of phospholipase A(2) inhibitors (PLIs). AnMIP appears as a homotrimer in the native state, held together by non-covalent forces, with a subunit molecular mass of 22,247-22,301 and an isoelectric point of 4.1-4.7. This trimeric structure is the first observed in a PLIalpha from American crotaline snakes, previously reported only in Asian species. Sequencing, mass spectrometry, and analytical isoelectrofocusing indicated the existence of isoforms, as reported for other PLIalphas isolated from snake plasma. The inhibitory profile of AnMIP showed specificity towards group II PLA(2)s, either belonging to the catalytically-active (D49) or -inactive (K49) subtypes, exemplified in this study by Bothrops asper myotoxin I and A. nummifer myotoxin II, respectively. By phylogenetic analysis it was shown that AnMIP is closely related to CgMIP-II, previously isolated from the plasma of Cerrophidion godmani, showing 93% amino acid sequence identity.  相似文献   

10.
The role of aspartic acid-49 (Asp-49) in the active site of porcine pancreatic phospholipase A2 was studied by recombinant DNA techniques: two mutant proteins were constructed containing either glutamic acid (Glu) or lysine (Lys) at position 49. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions, in particular for the lysine mutant, but the affinity for substrate analogues is hardly affected. Extensive purification of naturally occurring Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein that was nearly inactive. Inhibition studies showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself has no enzymatic activity. Our results indicate that Asp-49 is essential for the catalytic action of phospholipase A2. The importance of Asp-49 was further evaluated by comparison of the primary sequences of 53 phospholipases A2 and phospholipase homologues showing that substitutions at position 49 are accompanied by structural variations of otherwise conserved residues. The occurrence of several nonconserved substitutions appeared to be a general characteristic of nonactive phospholipase A2 homologues.  相似文献   

11.
Lys49 phospholipase A2 (PLA2) homologues present in crotalid snake venoms lack enzymatic activity, yet they induce skeletal muscle necrosis by a membrane permeabilizing mechanism whose details are only partially understood. The present study evaluated the effect of altering the membrane cholesterol content on the cytolytic activity of myotoxin II, a Lys49 PLA2 isolated from the venom of Bothrops asper, using the myogenic cell line C2C12 as a model target. Cell membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) treatment enhanced the cytolytic action of myotoxin II, as well as of its bioactive C-terminal synthetic peptide p(115-129) . Conversely, cell membrane cholesterol enrichment by preformed cholesterol-MβCD complexes reduced the cytolytic effect of myotoxin II. The toxic actions of myotoxin I, a catalytically active PLA2 from the same venom, as well as of the cytolytic peptide melittin from bee venom, also increased in cholesterol-depleted cells. Although physical and functional changes resulting from variations in membrane cholesterol are complex, these findings suggest that membrane fluidity could be a relevant parameter to explain the observed modulation of the cytolytic mechanism of myotoxin II, possibly influencing bilayer penetration. In concordance, the cytolytic effect of myotoxin II decreased in direct proportion to lower temperature, a physical factor that affects membrane fluidity. In conclusion, physicochemical properties that depend on membrane cholesterol content significantly influence the cytolytic mechanism of myotoxin II, reinforcing the concept that the primary site of action of Lys49 PLA2 myotoxins is the plasma membrane.  相似文献   

12.
A myotoxic, basic phospholipase A2 (pI greater than 9.5) with anticoagulant activity has been purified from the venom of Bothrops asper, and its amino acid sequence determined by automated Edman degradation. It is distinct from the B. asper phospholipase A2 known as myotoxin I [Lomonte, B. and Gutierrez, J. M., 1989, Toxicon 27, 725] but cross-reacts with myotoxin I rabbit antisera, suggesting that the proteins are closely related isoforms. To our knowledge, this is the first myotoxic phospholipase to be sequenced that lacks presynaptic neurotoxicity (iv LD50 approximately equal to 8 micrograms/g in mice). The protein appears to exist as a monomer, contains 122 amino acids, and fits with subgroup IIA of other sequenced phospholipase A2 molecules. Its primary sequence shows greatest identity with ammodytoxin B (67%), a phospholipase A2 presynaptic neurotoxin from Vipera ammodytes ammodytes venom. Hydropathy profiles of B. asper phospholipase and the ammodytoxins also show great similarities. In contrast, even though the amino acid sequence identities between B. asper phospholipase and the basic subunit of crotoxin remain high (64%), their hydropathy profiles differ substantially. Domains and residues that may be responsible for neurotoxicity are discussed.  相似文献   

13.
The effects of two cationic synthetic peptides, derived from the C-terminal region of Lys49 phospholipase A2 homologues from snake venoms, upon various murine tumor cell lines (B16 melanoma, EMT6 mammary carcinoma, S-180 sarcoma, P3X myeloma, tEnd endothelial cells) were evaluated. The peptides are 13-mers derived from Agkistrodon piscivorus piscivorus Lys49 PLA2 (p-AppK: KKYKAYFKLKCKK) and Bothrops asper Lys49 myotoxin II (pEM-2[D]: KKWRWWLKALAKK), respectively, in the latter case with slight modifications and with all-D amino acids. All tumor cells tested were susceptible to the lytic action of the peptides. The susceptibility of tumor cell lines was not higher than that of C2C12 skeletal muscle myoblasts, utilized as a non-transformed cell line control. However, in a murine model of subcutaneous solid tumor growth of EMT6 mammary carcinoma, the intraperitoneal administration of pEM-2[D] caused a tumor mass reduction of 36% (p<0.05), which was of similar magnitude to that achieved by the administration of paclitaxel, an antitumor drug in clinical use. Thus, the C-terminal peptides of Lys49 phospholipase A2 homologues present antitumor effects that might be of interest in developing therapeutic strategies against cancer.  相似文献   

14.
The complete amino acid sequence of the 121 amino acid residues of piratoxin II, a phospholipase A(2) like myotoxin from Bothrops pirajai venom, is reported. PrTX-II is a basic protein with a molecular mass of 13740 Da, a calculated pI of 9.03, but an experimental pI of 8.4 +/- 0.2, showing sequence similarity with other bothropic (90-99%) or non-bothropic ( approximately 80%) Lys49 PLA(2)-like myotoxins. This similarity falls to approximately 70% when this sequence is aligned with that of Asp49 PLA(2). Due to the substitution of Asp49 by Lys49 and alterations in the calcium binding loop structure, as the replacement of Gly32 by Leu32, piratoxin-II shows no PLA(2) activity when assayed on egg yolk. Piratoxin-II showed the same primary structure as piratoxin-I, except that it has Lys116 for Leu116. Despite this slightly higher basicity at the C-terminal region, piratoxin-II was shown to be less myotoxic than piratoxin-I. The change Leu --> Lys induced an alteration of the molecule surface shape and probably of the environment charge high enough to slightly decrease the myotoxic activity. When aligned with B. jararacussu bothropstoxin-I and with B. asper Basp-II, piratoxin-II revealed a single (position 132) and a quintuple (positions 17, 90, 111, 120 and 132) amino acid substitution, respectively, suggesting a common evolutionary origin for these three myotoxins.  相似文献   

15.
A new class of phospholipases A2 that have a lysine at position 49 differ from the more conventional Asp-49 enzymes with respect to the sequential binding of the essential cofactor, calcium, and the substrate, phospholipid, in the formation of the catalytic complex (Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kézdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843). We report here the complete amino acid sequence of the Lys-49 enzyme from Agkistrodon piscivorus piscivorus. The sequence was determined by automated Edman degradation of the intact, S-carboxymethylcysteinyl protein and of peptides derived therefrom by cleavage with cyanogen bromide, chymotrypsin, trypsin, and endoproteinase Lys-C. Despite several changes at amino acid residues previously considered to be invariant, the Lys-49 enzymes are homologous to the Asp-49 phospholipases. Homology is especially apparent in the following: 1) the pattern of 14 half-cystine residues, 2) conservation of hydrophobic residues which have been shown to encircle the active site, and 3) conservation of Asp-99 and His-48 which have been implicated in the catalytic reaction itself. These observations together with kinetic and binding data imply that the Lys-49 phospholipases have a catalytic mechanism and a three-dimensional architecture similar to those of the Asp-49 enzymes. Modeling of the Lys-49 enzyme based upon the structure of bovine pancreatic phospholipase reveals that the epsilon-amino group of Lys-49 can fit easily in the calcium-binding site and, moreover, that this orientation of a cationic side chain at position 49 could account for the characteristic and novel feature of the Lys-49 phospholipases, i.e. that they are able to form complexes with phospholipid in the absence of calcium.  相似文献   

16.
The complete amino acid sequence of bothropstoxin-II (BthTX-II), a myotoxin isolated from Bothrops jararacussu snake venom, is reported. The results show that BthTX-II is an Asp-49 phospholipase A2 (PLA2)-like protein composed of a single polypeptide chain of 120 amino acid residues (M r = 13,976), containing one methionine and 14 half-cystines. Despite a high degree of homology with other PLA2's and the presence of the strategic residues known to compose the Ca2+-binding loop, namely Tyr-28, Gly-30, Gly-32, and especially Asp-49, besides His-48, Tyr-52, and Asp-99, all of them directly or indirectly involved in catalysis, BthTX-II revealed a very low PLA2 activity when assayed on egg yolk phosphatidylcholine. We attribute this low catalytic activity to the existence of extra mutations, e.g., Trp-5 for Phe-5, which points to the need of considering other strategic positions, since only Lys-49 PLA2's have been considered to be devoid of this enzymatic activity.  相似文献   

17.
The complete amino acid sequence of bothropstoxin-II (BthTX-II), a myotoxin isolated from Bothrops jararacussu snake venom, is reported. The results show that BthTX-II is an Asp-49 phospholipase A2 (PLA2)-like protein composed of a single polypeptide chain of 120 amino acid residues (M r = 13,976), containing one methionine and 14 half-cystines. Despite a high degree of homology with other PLA2's and the presence of the strategic residues known to compose the Ca2+-binding loop, namely Tyr-28, Gly-30, Gly-32, and especially Asp-49, besides His-48, Tyr-52, and Asp-99, all of them directly or indirectly involved in catalysis, BthTX-II revealed a very low PLA2 activity when assayed on egg yolk phosphatidylcholine. We attribute this low catalytic activity to the existence of extra mutations, e.g., Trp-5 for Phe-5, which points to the need of considering other strategic positions, since only Lys-49 PLA2's have been considered to be devoid of this enzymatic activity.  相似文献   

18.
The complete sequence of the 121 amino acid residues of piratoxin-I (PrTX-I), a phospholipase A2 (PLA2)-like myotoxin fromBothrops pirajai snake (Bahia jararacussu) venom, is reported. From the sequence, anM r of 13,825 and an approximatepI of 8.3 were calculated. PrTX-I shows a high sequence homology with Lys-49 myotoxins from other bothropic (∼95%) and nonbothropic (∼80%) venoms, but only 70–75% homology w hen aligned with the catalytically active Asp-49 PLA2s. When compared with bothropstoxin-I fromBothrops jararacussu, which is morphologically almost identical toB. pirajai, only two changes out of 121 total amino acid residues have been observed. The approximate minimal lethal doseLD 50 (mice, i.p., 24 hr) of PrTX-I was 8 (6.8–9.1) mg/kg, and the minimal edematogenic dose (MED) in a rat paw model was 39.5±1.8 ug. After alkylation of His-48 withp-bromophenacyl bromide, the MED was 40.1±1.9 ug, but up to 4LD 50 were unable to cause death in any of a group of eight mice after 72 hr. Therefore the edematogenic activity was retained and apparently did not involve His-48, suggesting that at least two biologically active sites are present in PrTX-I.  相似文献   

19.
The complete sequence of the 121 amino acid residues of piratoxin-I (PrTX-I), a phospholipase A2 (PLA2)-like myotoxin fromBothrops pirajai snake (Bahia jararacussu) venom, is reported. From the sequence, anM r of 13,825 and an approximatepI of 8.3 were calculated. PrTX-I shows a high sequence homology with Lys-49 myotoxins from other bothropic (∼95%) and nonbothropic (∼80%) venoms, but only 70–75% homology w hen aligned with the catalytically active Asp-49 PLA2s. When compared with bothropstoxin-I fromBothrops jararacussu, which is morphologically almost identical toB. pirajai, only two changes out of 121 total amino acid residues have been observed. The approximate minimal lethal doseLD 50 (mice, i.p., 24 hr) of PrTX-I was 8 (6.8–9.1) mg/kg, and the minimal edematogenic dose (MED) in a rat paw model was 39.5±1.8 ug. After alkylation of His-48 withp-bromophenacyl bromide, the MED was 40.1±1.9 ug, but up to 4LD 50 were unable to cause death in any of a group of eight mice after 72 hr. Therefore the edematogenic activity was retained and apparently did not involve His-48, suggesting that at least two biologically active sites are present in PrTX-I.  相似文献   

20.
Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human alpha1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号