共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA在鸟类分子系统发育研究中的应用 总被引:1,自引:0,他引:1
鸟类分子系统发育研究中常用的DNA技术有DNA杂交、RFLP和DNA序列分析等。DNA杂交技术曾在鸟类中有过大规模的应用,并由此诞生了一套新的鸟类分类系统。在鸟类的RFLP分析中,用的最多的靶序列是线粒体DNA。DNA序列分析技术被认为是进行分子系统发育研究最有效、最可靠的方法。在DNA序列分析中,线粒体基因应用最广泛,但由于其自身的一些不足,近年来,不少学者把目光投向了核基因,将线粒体基因和核基因结合起来进行系统发育研究。目前在鸟类分子系统发育中,应用较多的核基因是scnDNA,其内含子可以用于中等阶元水平的系统研究,而外显子主要用于高等阶元的系统研究。除了分子标记自身的问题之外,鸟类分子系统发育研究中还存在着方法上的问题,包括分子标记的选择,样本数量以及数据处理等。今后鸟类分子系统发育研究应该更加注重方法的标准化。 相似文献
2.
One mtDNA gene (cytochrome b), one nuclear DNA fragment, five microsatellites and a suite of morphological characters were evaluated in samples of Rutilus spp. from Skadar, Ohrid and Prespa Lakes. Both genetic and phenotypic data supported two sympatric taxa in Lake Skadar, whereby Prespa and Ohrid Lakes revealed only a single taxon each. One of the taxa from Lake Skadar was similar to samples from Lake Prespa, whereas the second taxon was the most divergent in the data set. The estimated time to the most recent common ancestor of these two sympatric taxa in Lake Skadar was between 125 000 and 500 000 years. The data did not support existing taxonomic schemes for Rutilus in these lakes. This study poses the following working hypothesis: (1) Rutilus prespensis lives both in Lake Prespa and Lake Skadar and therefore is not endemic to Lake Prespa, (2) Rutilus ohridanus lives in Lake Ohrid only and therefore could be considered an endemic if its species status is retained and (3) a third recently described taxon (Rutilus albus) sympatric to R. prespensis lives in Lake Skadar. 相似文献
3.
Hybridization between two closely related species is a natural evolutionary process that results in an admixture of previously isolated gene pools. The exchange of genes between species may accelerate adaptation and lead to the formation of new lineages. Hybridization can be regarded as one important evolutionary mechanism driving speciation processes. Although recent studies have highlighted the taxonomic breadth of natural hybridization in the primate order, information about primate hybridization is still limited compared to that about the hybridization of fish, birds, or other mammals. In primates, hybridization has occurred mainly between subspecies and species, but has also been detected between genera and even in the human lineage. Here we provide an overview of cases of natural hybridization in all major primate radiations. Our review emphasizes a phylogenetic approach. We use the data presented to discuss the impact of hybridization on taxonomy and conservation. 相似文献
4.
Close affinities recognized between taxa in Mexico and the contiguous USA have led to a variety of biogeographical scenarios. One such hypothesis suggests that species that occur in both countries have an origin in central Mexico followed by dispersal into the USA. This study expands upon previous phylogeographical work of the ringneck snake Diadophis punctatus by incorporating new data from previously unsampled areas appropriate to critically assess hypotheses regarding a Mexican origin for this species. Maximum likelihood and maximum parsimony analyses inferred a derived position for the lineage from southern Mexico with constraint tests for alternate evolutionary hypotheses resulting in significantly worse likelihood values. Ancestral area reconstructions inferred an origin for D. punctatus in the south‐eastern USA followed by a south‐east to north‐east then westward directionality of historical migration. The position within the phylogeny and date estimate for the south‐western + Mexico clade suggests a recent invasion into central Mexico with expansion into the Nearctic/Neotropic transition zone. The extensive lineage diversity inferred from the mtDNA suggests that the genus is a complex of cryptic species whose conservational status should be re‐evaluated on both the national and regional levels. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 629–640. 相似文献
5.
Rocha LA Robertson DR Rocha CR Van Tassell JL Craig MT Bowen BW 《Molecular ecology》2005,14(13):3921-3928
The last tropical connection between Atlantic and Indian-Pacific habitats closed c. 2 million years ago (Ma), with the onset of cold-water upwelling off southwestern Africa. Yet comparative morphology indicates more recent connections in several taxa, including reef-associated gobies (genus Gnatholepis). Coalescence and phylogenetic analyses of mtDNA cytochrome b sequences demonstrate that Gnatholepis invaded the Atlantic during an interglacial period approximately 145,000 years ago (d = 0.0054), colonizing from the Indian Ocean to the western Atlantic, and subsequently to the central ( approximately 100,000 years ago) and eastern Atlantic ( approximately 30,000 years ago). Census data show a contemporary range expansion in the northeastern Atlantic linked to global warming. 相似文献
6.
Tegeticula maculata is one of the most ancient and morphologically variable lineages within the yucca moths, yet has apparently undergone little diversification in comparison with much younger yucca moth lineages that have rapidly diversified. A phylogeographic approach was used to determine the number of independent lineages within T. maculata and to examine whether these patterns corresponded with morphological differences between its subspecies maculata and extranea. Phylogenetic analysis of mitochondrial DNA sequence variation indicated that the two subspecies are in separate clades, but there was also an equally deep split within subspecies maculata. There was no evidence for gene flow among regions and there was considerable substructure within clades. The phylogeographic structure of moth populations among and within subspecies can be explained in part by historical biogeographic boundaries and increasingly patchy postglacial distribution of the exclusive host plant, Hesperoyucca whipplei. Local specialization and co-adaptation would be possible in the absence of apparent gene flow, yet gross morphological divergence is limited to the very old split between the subspecies. Sorting of ancient mitochondrial lineages followed by local genetic differentiation may explain the pattern of high genetic structure with limited speciation. 相似文献
7.
In isolated oceanic islands, colonization patterns are often interpreted as resulting from dispersal rather than vicariant events. Such inferences may not be appropriate when island associations change over time and new islands do not form in a simple linear trend. Further complexity in the phylogeography of ocean islands arises when dealing with endangered taxa as extinctions, uncertainty on the number of evolutionary ‘units’, and human activities can obscure the progression of colonization events. Here, we address these issues through a reconstruction of the evolutionary history of giant Galápagos tortoises, integrating DNA data from extinct and extant species with information on recent human activities and newly available geological data. Our results show that only three of the five extinct or nearly extinct species should be considered independent evolutionary units. Dispersal from mainland South America started at approximately 3.2 Ma after the emergence of the two oldest islands of San Cristobal and Española. Dispersal from older to younger islands began approximately 1.74 Ma and was followed by multiple colonizations from different sources within the archipelago. Vicariant events, spurred by island formation, coalescence, and separation, contributed to lineage diversifications on Pinzón and Floreana dating from 1.26 and 0.85 Ma. This work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human‐mediated dispersal events and highlights the need to take into account both vicariance and dispersal when dealing with organisms from islands whose associations are not simply explained by a linear emergence model. 相似文献
8.
Phylogeography has become a powerful approach for elucidating contemporary geographical patterns of evolutionary subdivision within species and species complexes. A recent extension of this approach is the comparison of phylogeographic patterns of multiple co-distributed taxonomic groups, or 'comparative phylogeography.' Recent comparative phylogeographic studies have revealed pervasive and previously unrecognized biogeographic patterns which suggest that vicariance has played a more important role in the historical development of modern biotic assemblages than current taxonomy would indicate. Despite the utility of comparative phylogeography for uncovering such 'cryptic vicariance', this approach has yet to be embraced by some researchers as a valuable complement to other approaches to historical biogeography. We address here some of the common misconceptions surrounding comparative phylogeography, provide an example of this approach based on the boreal mammal fauna of North America, and argue that together with other approaches, comparative phylogeography can contribute importantly to our understanding of the relationship between earth history and biotic diversification. 相似文献
9.
Ronald S. Burton 《Evolution; international journal of organic evolution》1998,52(3):734-745
Recent studies of intraspecific phylogeography have suggested that the geographic location of genetic discontinuities, or phylogeographic breaks, may frequently coincide with biogeographic boundaries. The concordance is hypothesized to reflect similarity in the processes governing species boundaries and intraspecific lineage boundaries. This concordance has not, however, been widely tested. In the case of the Point Conception biogeographic boundary between the Oregonian and Californian marine biotas, only the supralittoral copepod Tigriopus californicus has been found to have a coincident phylogeographic break. Here I show that the apparent relationship between this break and Point Conception was, in fact, an artifact of insufficient geographic sampling. Mitochondrial DNA analyses of T. californicus populations between Morro Bay and San Diego reveal at least five equally deep phylogeographic breaks in the region (where only one biogeographic boundary is recognized). Limited nuclear DNA sequence data and allozyme data also support the occurrence of multiple genetic discontinuities along this geographic range. Lack of one-to-one correspondence between intraspecific phylogeography and biogeographic boundaries indicates that the processes affecting the genetic differentiation of populations of T. californicus differ from those responsible for determining species distributional limits at the Point Conception biogeographic boundary. A review of genetic data from other species also fails to provide evidence for concordance of biogeography and intraspecific phylogeography across Point Conception. I suggest that the concordance of phylogeography with biogeography will only be pronounced where the biogeographic boundary separates biotas that are phylogenetically related. The numerous cases of interspecific hybrid zones in the region of Cape Canaveral, for example, indicate that many sister-species pairs occur across this biogeographic boundary. Such hybrid zones are not common at Point Conception, and there appears to be no cases of intraspecific phylogeographic breaks associated with this well-recognized biogeographic boundary. 相似文献
10.
Pichler FB Robineau D Goodall RN Meÿer MA Olivarría C Baker CS 《Molecular ecology》2001,10(9):2215-2223
The genus Cephalorhynchus (Gray 1846) consists of four species of small coastal dolphins distributed in cool temperate waters around the Southern Hemisphere. Each species is sympatric with other members of the subfamily Lissodelphininae but widely separated from other congeners. To describe the origin and radiation of these species, we examined 442 bp of mitochondrial DNA control region sequences of 307 individuals from the genus Cephalorhynchus and compared these to sequences from other members of the subfamily Lissodelphininae. We investigate the hypotheses that Cephalorhynchus is a monophyletic genus or, alternatively, that the four species have arisen separately from pelagic Lissodelphine species and have converged morphologically. Our results support the monophyly of Cephalorhynchus within the Lissodelphininae and a pattern of radiation by colonization. We confirm a pattern of shallow but diagnosable species clades with Heaviside's dolphin as the basal branch. We further examine the monophyly of maternal haplotypes represented by our large population sample for each species. Based on this phylogeographic pattern, we propose that Cephalorhynchus originated in the waters of South Africa and, following the West Wind Drift, colonized New Zealand and then South America. The Chilean and Commerson's dolphins then speciated along the two coasts of South America, during the glaciation of Tierra del Fuego. Secondary radiations resulted in genetically isolated populations for both the Kerguelen Island Commerson's dolphin and the North Island Hector's dolphin. Our results suggest that coastal, depth-limited odontocetes are prone to population fragmentation, isolation and occasionally long-distance movements, perhaps following periods of climatic change. 相似文献
11.
Fossil planktic foraminifers in the ocean sediments play an unparalleled role in our understanding of the oceanographic environment in the past. An in depth knowledge of their diversity, ecology and biogeography in the modern ocean lies central to the interpretation of the fossil assemblages. In comparison with their benthic counterparts, planktic foraminifera have a very limited diversity of around fifty extant morphospecies. Their morphospecies diversity peaks in the sub-tropics and decreases steeply towards the poles. Traditional species concepts have partitioned morphological types into distinct species (morphospecies) based on test shape, but genetic studies show that individual morphospecies are actually complexes of several discrete genetic types (genotypes). Many of these genotypes have distinct ecologies and novel adaptations that are consistent with species-level classification, indicating that the true diversity of planktic foraminifers has been greatly underestimated. Although planktic foraminifera are clearly capable of long-distance dispersal, they may be constrained by both physical and ecological barriers that vary according to the evolutionary history and ecology of the individual genotypes within a morphospecies. These differences lead to diverse biogeographies. Here, we provide an overview of the genetic and biogeographic data available to date for the planktic foraminifera and present global biogeographies highlighting the distribution of genetic types in the eight planktic foraminiferal morphospecies for which detailed molecular evidence is available. 相似文献
12.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives. 相似文献
13.
Masters JC Anthony NM de Wit MJ Mitchell A 《American journal of physical anthropology》2005,127(4):465-480
Major aspects of lorisid phylogeny and systematics remain unresolved, despite several studies (involving morphology, histology, karyology, immunology, and DNA sequencing) aimed at elucidating them. Our study is the first to investigate the evolution of this enigmatic group using molecular and morphological data for all four well-established genera: Arctocebus, Loris, Nycticebus, and Perodicticus. Data sets consisting of 386 bp of 12S rRNA, 535 bp of 16S rRNA, and 36 craniodental characters were analyzed separately and in combination, using maximum parsimony and maximum likelihood. Outgroups, consisting of two galagid taxa (Otolemur and Galagoides) and a lemuroid (Microcebus), were also varied. The morphological data set yielded a paraphyletic lorisid clade with the robust Nycticebus and Perodicticus grouped as sister taxa, and the galagids allied with Arctocebus. All molecular analyses maximum parsimony (MP) or maximum likelihood (ML) which included Microcebus as an outgroup rendered a paraphyletic lorisid clade, with one exception: the 12S + 16S data set analyzed with ML. The position of the galagids in these paraphyletic topologies was inconsistent, however, and bootstrap values were low. Exclusion of Microcebus generated a monophyletic Lorisidae with Asian and African subclades; bootstrap values for all three clades in the total evidence tree were over 90%. We estimated mean genetic distances for lemuroids vs. lorisoids, lorisids vs. galagids, and Asian vs. African lorisids as a guide to relative divergence times. We present information regarding a temporary land bridge that linked the two now widely separated regions inhabited by lorisids that may explain their distribution. Finally, we make taxonomic recommendations based on our results. 相似文献
14.
Phylogenetic relationships of members of the subfamily Poeciliinae (Cyprinodontiformes) are investigated to test alternate hypotheses of diversification resulting from the assembly of the Central America and the Caribbean from the Cretaceous period onwards. We use 4333 aligned base pairs of mitochondrial DNA and 1549 aligned base pairs of nuclear DNA from 55 samples representing 48 ingroup and seven outgroup species to test this hypothesis. Mitochondrial genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine and tyrosine; and complete cytochrome b and NADH dehydrogenase subunit I and II; nuclear gene analyzed included the third exon of the recombination activation gene 1 (RAG1). Analyses of combined mtDNA and nuclear DNA data sets result in a well-supported phylogenetic hypothesis. This hypothesis is in conflict with the classical taxonomic assignment of genera into tribes and phylogenetic hypotheses based on the taxonomy; however, the molecular hypothesis defines nine clades that are geographically restricted and consistent with the geological evolution of Central America and the Caribbean. Our analyses support multiple colonization events of Middle America followed by a mix of vicariance and dispersal events. 相似文献
15.
In the Society archipelago (French Polynesia), Acrocephalus reed warblers are known only from four islands: Tahiti, Mo'orea, Huahine and Raiatea. All populations are now extinct except on Tahiti. Our knowledge of these birds is based on a small number of specimens preserved in museums, collected mostly during the 19th century. We present here a review of the past and present distribution, habitat and threats to the Society Islands reed warblers, including details on the specimens in museum collections. We compare the external morphology of the different populations, and use samples from museum specimens to propose a molecular phylogeny of all taxa based on partial cytochrome b gene sequences. The genetic data do not support the monophyly of the Society Islands reed warblers, which probably derived from three different lineages, found in Tahiti, Mo'orea and in the cluster Raiatea–Huahine. We outline the taxonomic consequences of this phylogeny. Our results support the hypothesis that evolutionary pattern, not distance between islands, shaped the long-distance colonization of oceanic islands by reed warblers. 相似文献
16.
The last Pleistocene deglaciation shaped temperate and boreal communities in North America. Rapid northward expansion into high latitudes created distinctive spatial genetic patterns within species that include closely related groups of populations that are now widely spread across latitudes, while longitudinally adjacent populations, especially those near the southern periphery, often are distinctive due to long‐term disjunction. Across a spatial expanse that includes both recently colonized and long‐occupied regions, we analysed molecular variation in zapodid rodents to explore how past climate shifts influenced diversification in this group. By combining molecular analyses with species distribution modelling and tests of ecological interchangeability, we show that the lineage including the Preble's meadow jumping mouse (Zapus hudsonius preblei), a US federally listed taxon of conservation concern, is not restricted to the southern Rocky Mountains. Rather, populations along the Front Range are part of a single lineage that is ecologically indistinct and extends to the far north. Of the 21 lineages identified, this Northern lineage has the largest geographical range and low measures of intralineage genetic differentiation, consistent with recent northward expansion. Comprehensive sampling combined with coalescent‐based analyses and niche modelling leads to a radically different view of geographical structure within jumping mice and indicates the need to re‐evaluate their taxonomy and management. This analysis highlights a premise in conservation biology that biogeographical history should play a central role in establishing conservation priorities. 相似文献
17.
ADRIAN L. V. DAVIS CLARKE H. SCHOLTZ 《Biological journal of the Linnean Society. Linnean Society of London》2010,99(2):407-423
We investigate how late Cenozoic orogenics and climatic change might have influenced the history of taxon diversification and current species ranges of an endemic, Afrotropical, insect genus. Diastellopalpus van Lansberge is a near basally‐derived taxon in the dung beetle tribe Onthophagini (Coleoptera: Scarabaeidae: Scarabaeinae) that has diversified into 32 known species primarily centred on intertropical forests. Basal dichotomies in both published and re‐analysed phylogenies divide the species into clades that are geographically centred either to the east or west of the south‐east highlands that underwent uplift from the Miocene. There is broad climatic overlap between many of the species but clear separation along a minimum spanning tree in ordinal space where they are divided into taxa with either lowland or highland centres of distribution. Observed spatial distributions of six defined species groups mostly differ from predicted climatic ranges, presumably as a result of historical constraints on species dispersal. A trend from dominance of montane or wet lowland forest associations in species lineages derived from more basal nodes (Groups A–C) to dominance of drier upland forest and moist woodland associations in species lineages derived from a more terminal node (Groups D–F) is perhaps linked to the stepped trend to cooler, dryer climate in the late Cenozoic. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 407–423. 相似文献
18.
T. T. T. NGUYEN C. M. AUSTIN M. M. MEEWAN M. B. SCHULTZ D. R. JERRY 《Biological journal of the Linnean Society. Linnean Society of London》2004,83(4):539-550
The yabby, Cherax destructor Clark, is the most widespread species in the most widespread genus of Australian freshwater crayfish. It has a distribution that spans several distinct drainage basins and biogeographical regions within semiarid and arid inland Australia. Here we report a study designed to investigate patterns of genetic variation within the species and hypotheses put forward to account for its extensive distribution using DNA sequences from the mitochondrial 16S rRNA gene region. Results of phylogenetic analyses contradicted previous allozyme data and revealed relatively deep phylogenetic structure in the form of three geographically correlated clades. The degree of genetic divergences between clades (8–15 bp) contrasted with the relatively limited haplotype diversity within clades (1–3 bp). Network-based analyses confirmed these results and revealed genetic structure on both larger and more restricted geographical scales. Nevertheless some haplotypes and 1-step clades had large distributions, some of which crossed boundaries between river basins and aquatic biogeographical regions. Thus both older and more recent historical processes, including fragmentation on a larger geographical scale and more recent range expansion on a local scale, appear to be responsible for the observed pattern of genetic variation within C. destructor . These results support elements of alternative hypotheses previously put forward to account for the evolutionary history of C. destructor and the origin of its large distribution. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 539–550. 相似文献
19.
20.
Using the phylogeographic framework, we assessed the DNA sequence variation at the mitochondrial cytochrome b gene across the distribution range of the barbel Barbus barbus, a widely distributed European cyprinid. Reciprocal monophyly of non-Mediterranean European and Balkan/Anatolian populations is taken as evidence for a long-term barrier to gene flow, and interpreted as a consequence of survival of the species in two separate refugia during several later glacial cycles. Lack of profound genealogical divergence across Europe from western France to the northwestern Black Sea basin is consistent with recent colonization of this area from a single glacial refuge, which was probably located in the Danube River basin. This may have occurred in two steps: into the Western European river basins during the last interglacial, and throughout the Central European river basins after the last glacial. The populations from the Balkans and Anatolia apparently did not contribute mitochondrial DNA to the post-Pleistocene colonization of non-Mediterranean Europe. Lack of detectable variation within the Balkans/Anatolia is attributed mainly to recent expansion throughout these regions, facilitated by the freshwater conditions and seashore regression in the Black Sea during the Late Pleistocene and Early Holocene. 相似文献