首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim The evolution of avian speciation patterns across much of Eurasia is under‐explored. Excepting phylogeographic patterns of single species, or speciation involving the Himalayas, there has been no attempt to understand the evolution of avian distributional patterns across the rest of the continent. Within many genera there is a pattern of (presumed) sister species occurring in adjacent areas (western, eastern or southern Eurasia), yet this pattern cannot be explained by existing biogeographic barriers. My aim was to examine the possible role of climate‐driven vicariance events in generating avian distributions. Location Eurasia. Methods I constructed a molecular phylogeny of Phoenicurus redstarts, and assembled phylogenetic data from published studies of seven other Eurasian bird genera. On each phylogeny, I assessed the distributional patterns of species and clades relative to refugial areas in western, eastern and southern Eurasia. I also estimated the timing of lineage divergences via a molecular clock, to determine whether distributional patterns can be explained by well‐defined periods of climate change in Eurasia that are recorded from dated sediments in the Chinese Loess Plateau. Results Species relationships in a well‐supported phylogeny of Phoenicurus show a pattern of distributions consistent with repeated speciation in major refugial areas, where one lineage is isolated in a single area of Eurasia relative to its sister lineage. This same pattern is evident in Eurasian Turdus thrushes, and six additional avian genera distributed across Eurasia. Molecular clock dating indicates that divergences within each genus are the result of multiple rounds of speciation in refugia through time, during major climate‐driven episodes of vicariance. Main conclusions Analyses revealed substantial evidence supporting a repeated, non‐random pattern of speciation within and across eight songbird lineages since the Late Miocene. The pattern of speciation supports a model of isolation in refugia during major episodes of vicariance, specifically periods of either intensified desertification of Central Asia or Eurasian glacial cycles. The densely sampled clades used here preclude inter‐continental dispersal as an alternative explanation for distributions. The signature of climate‐driven vicariance across epochs is, given the absence of extant biogeographic barriers, a suitable hypothesis to explain major lineage divergences in widely distributed Eurasian songbird lineages.  相似文献   

2.
Aim Many plants occurring on the isolated mountain peaks of Africa have their closest relatives in very remote areas, even in temperate Europe and Asia. Their biogeographical history is poorly understood. The Afro‐montane element of the primarily Eurasian genus Lychnis is a typical example of such a disjunction. Here, we aim to reconstruct the phylogeny of the Afro‐montane endemics of Lychnis and to infer the history of immigration into Africa and of the subsequent dispersal and speciation. Location The Afro‐montane representatives of Lychnis occur in Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, the Democratic Republic of Congo, Cameroon, and Nigeria. Methods Silica‐dried plant materials collected in Ethiopia in 2004 as well as herbarium material were used for DNA extractions. We used parsimony analysis of nucleotide data from the rps16 intron and psbE‐petL region in plastids, and the internal transcribed spacer (ITS) and a region spanning exon 18–24 in the second largest subunit of RNA polymerase II (RPB2) from the nucleus. DAPI‐flow cytometry was used to determine relative genome size and to infer polyploidization events. Results Monophyly of the Afro‐montane Lychnis with the Eurasian diploid L. flos‐cuculi resolved as sister was strongly supported by the phylogenetic analyses. The Afro‐montane group was further divided into two strongly supported groups correlated with DNA ploidy levels. The relative genome size was species‐specific except for L. abyssinica, which had two genome‐size variants. Main conclusions Our results demonstrate that the biogeographical history of the Afro‐montane Lychnis has been highly dynamic, including polyploidization and both old and recent long‐distance dispersal events, even between Eastern and West Africa. The ancestor is inferred to have immigrated once from Eurasia via the Arabian Peninsula to the Ethiopian highlands. Divergence in the lineage containing diploid taxa was followed by several dispersals from Ethiopia to the Eastern and Western Rift Mountains, and recently to West Africa. Divergence of the lineage including the tetraploid L. crassifolia may have taken place in Ethiopia, from where it dispersed to the Eastern and Western Rift Mountains; alternatively, it may have taken place in the Eastern Rift Mountains, followed by dispersal from there to the Western Rift Mountains and then to Ethiopia.  相似文献   

3.
A phylogeny of the genus Phlesirtes Bolivar is presented, based on new sequence data of three genes (16S rDNA, COI, H3). Species of the genus Phlesirtes (subtribe Karniellina of the Tribe Conocephalini) occupy habitats of montane to afroalpine grasslands in East Africa. Phlesirtes is the most species‐rich genus of the subtribe Karniellina, a group of small flightless Ensifera restricted to eastern Africa. Taken together, the biogeographical patterns seen in Phlesirtes and its molecular phylogeny suggest a migration scenario: the mountain ranges acting as stepping stones, enabling a spread of Phlesirtes ancestors during periods of favourable climatic conditions in the past. The Pleistocene inland volcanoes, such as Mt Kenya or Mt Kilimanjaro, allow us to date speciation processes within the genus Phlesirtes. It is suggested that cooler humid periods of the past 3 Ma boosted speciation of Phlesirtes in East Africa.  相似文献   

4.
Mountains host greater avian diversity than lowlands at the same latitude due to their greater diversity of habitats stratified along an elevation gradient. Here we test whether this greater ecological heterogeneity promotes sympatric speciation. We selected accentors (Prunellidae), an avian family associated with mountains of the Palearctic, as a model system. Accentors differ in their habitat/elevation preferences and south‐central Siberia and Himalayan regions each host 6 of the 13 species in the family. We used sequences of the mtDNA ND2 gene and the intron 9 of the Z chromosome specific ACO1 gene to reconstruct a complete species‐level phylogeny of Prunellidae. The tree based on joint analysis of both loci was used to reconstruct the family's biogeographic history and to date the diversification events. We also analyzed the relationship between the node age and sympatry, to determine the geographic mode of speciation in Prunellidae. Our data suggest a Miocene origin of Prunellidae in the Himalayan region. The major division between alpine species (subgenus Laiscopus) and species associated with shrubs (subgenus Prunella) and initial diversification events within the latter happened within the Himalayan region in the Miocene and Pliocene. Accentors colonized other parts of the Palearctic during the Pliocene‐Pleistocene transition. This spread across the Palearctic resulted in rapid diversification of accentors. With only a single exception dating to 0.91 Ma, lineages younger than 1.5 Ma are allopatric. In contrast, sympatry values for older nodes are >0. There was no relationship between node age and range symmetry. Allopatric speciation (not to include peripatric) is the predominant geographic mode of speciation in Prunellidae despite the favorable conditions for ecological diversification in the mountains and range overlaps among species.  相似文献   

5.
Abstract: A large collection of lizard vertebrae from northern Africa represents the oldest unambiguous occurrence of the genus Varanus. The fossils come from late Eocene and early Oligocene freshwater deposits of the Fayum, Egypt, an area noted for many significant primate finds. The recovery and identification of this material indicate that the genus Varanus arose in Africa, before dispersing to Australia and Asia. This dispersal occurred prior to the early to mid‐Miocene, by which time fossil Varanus are known from Australia and Eurasia. Although the dispersal route remains unknown, the lizard material reported here supports the hypothesis that a corridor existed allowing freshwater and terrestrial organisms to cross from Africa to Asia.  相似文献   

6.
Dispersal and vicariant hypotheses have for decades been at odds with each other, notwithstanding the fact that both are well-established natural processes with important histories in biogeographic analyses. Despite their importance, neither dispersal nor vicariant methodologies are problem-free. The now widely used molecular techniques for generating phylogenies have provided a mechanism by which both dispersal- and vicariance-driven speciation can be better tested via the application of molecular clocks; unfortunately, substantial problems can also exist in the employment of those clocks. To begin to assess the relative roles of dispersal and vicariance in the establishment of avifaunas, especially intercontinental avifaunas, I applied a test for clocklike behavior in molecular data, as well as a program that infers ancestral areas and dispersal events, to a phylogeny of a speciose, cosmopolitan avian genus (Anthus; Motacillidae). Daughter-lineages above just 25 of 40 nodes in the Anthus phylogeny are evolving in a clocklike manner and are thus dateable by a molecular clock. Dating the applicable nodes suggests that Anthus arose nearly 7 million yr ago, probably in eastern Asia, and that between 6 and 5 million yr ago, Anthus species were present in Africa, the Palearctic, and North and South America. Speciation rates have been high throughout the Pliocene and quite low during the Pleistocene; further evidence that the Pleistocene may have had little effect in generating modern species. Intercontinental movements since 5 million yr ago have been few and largely restricted to interchange between Eurasia and Africa. Species swarms on North America, Africa, and Eurasia (but not South America or Australia) are the product of multiple invasions, rather than being solely the result of within-continent speciation. Dispersal has clearly played an important role in the distribution of this group.  相似文献   

7.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

8.
Despite the fundamental role of speciation in formation of biodiversity, the genetic and ecological mechanisms related to this process, as well as the geography of speciation are still poorly known. In our research we have used methods of molecular phylogenetics and phylogeography to reconstruct the stages of speciation in two model groups of butterflies. Phylogeographic analysis showed that speciation in Agrodiaetus blues started in allopatry. An additional age-range correlation test also revealed a pattern consistent with allopatric speciation. However, the formation of new wing colors, the characters most important for maintenance of pre-zygotic reproductive isolation, was shown to occur after transition from allopatry to sympatry. Analysis of karyotypes, mitochondrial and nuclear molecular markers in the Wood White butterfly Leptidea sinapis L. showed that clinal speciation may have occurred in this case; this process is theoretically possible but difficult to document.  相似文献   

9.
It is generally accepted that accentuated global climatic cycles since the Plio-Pleistocene (2.8 Ma ago) have caused the intermittent fragmentation of forest regions into isolated refugia thereby providing a mechanism for speciation of tropical forest biota contained within them. However, it has been assumed that this mechanism had its greatest effect in the species rich lowland regions. Contrary evidence from molecular studies of African and South American forest birds suggests that areas of recent intensive speciation, where mostly new lineages are clustered, occur in discrete tropical montane regions, while lowland regions contain mostly old species. Two predictions arise from this finding. First, a species phylogeny of an avian group, represented in both lowland and montane habitats, should be ordered such that montane forms are represented by the most derived characters. Second, montane speciation events should predominate within the past 2.8 Ma. In order to test this model I have investigated the evolutionary history of the recently radiated African greenbuls (genus Andropadus), using a molecular approach. This analysis finds that montane species are a derived monophyletic group when compared to lowland species of the same genus and recent speciation events (within the Plio-Pleistocene) have exclusively occurred in montane regions. These data support the view that montane regions have acted as centres of speciation during recent climatic instability.  相似文献   

10.
Claremont, M., Reid, D.G. & Williams, S.T. (2012) Speciation and dietary specialization in Drupa, a genus of predatory marine snails (Gastropoda: Muricidae). —Zoologica Scripta, 41, 137–149. We test the competing predictions of allopatric speciation and of ecological speciation by dietary specialization in Drupa, an Indo‐Pacific genus of carnivorous marine gastropods in the family Muricidae. We use a well‐resolved molecular phylogeny (reconstructed from one nuclear and two mitochondrial genes) to show the validity of the traditional species D. elegans, D. rubusidaeus, D. clathrata, D. morum and D. speciosa.Drupa ricinus’ is shown to consist of three species: D. ricinus s. s., D. albolabris and a new species, possibly endemic to Japan. ‘Purpuraaperta is transferred to Drupa. Despite potential widespread dispersal and a high degree of range overlap among sister species, range sizes between sister species are highly asymmetric, suggesting that speciation has been predominately peripatric. The exception is the sister pair D. ricinus s. s. and D. albolabris, which have symmetric range sizes and are sympatric over broad Indo‐Pacific ranges. Such symmetry and extensive sympatry are contrary to the predictions of the (peripatric) allopatric model of speciation. Nevertheless, contrary to the predictions of an ecological speciation model based upon dietary specialization, broad dietary range appears to be identical between the species. Small differences in microhabitat preferences (or hypothetical dietary specialization at a fine taxonomic scale) may have been significant in the speciation process or, if initial divergence was allopatric, in permitting subsequent sympatry. Broad dietary shifts appear to have accompanied more ancient divergences within the genus Drupa.  相似文献   

11.
Human activity has been widely implicated in the origin and expansion of montane grasslands in East Africa, yet little palaeoecological evidence exists to test whether these grasslands are natural or secondary. Pollen and charcoal data derived from two Holocene records in the Eastern Arc mountains of Tanzania are used as a case study to investigate the supposed secondary nature of montane grasslands in Africa. Fossil pollen data are used to detect vegetation change, and charcoal analysis is used to reconstruct fire history. The pollen data are characterised by stable proportions of local taxa suggesting permanence of grasslands throughout the past ~13,000 years. Recent increases in fire adapted taxa such as Morella point towards the development of a grassland/forest patch mosaic possibly associated with burning. However, robust evidence of human activity is absent from the records, which may be attributed to the late human occupation of the mountains. The records indicate long-term persistence of grasslands which, coupled with a lack of evidence of human activity, suggests that these grasslands are not secondary. These data support the hypothesis that grasslands are an ancient and primary component of montane vegetation in Africa, but that they experienced some expansion during the late Holocene as a result of changing fire regime.  相似文献   

12.
West African Mountains of the Cameroon Volcanic Line harbour two montane‐endemic species of laminated‐toothed rats (Otomys), which represent the most westerly occurrence of the genus. We explore here through mtDNA sequencing and cranial morphometrics the taxonomic status and phylogenetic relationships of O. burtoni (Mt Cameroon) and O. occidentalis (Mts Oku and Gotel). We conclude that both species are valid and can be discriminated by molecular data, as well as quantitative and qualitative cranial characters. From molecular data, O. occidentalis and O. burtoni are closest neighbours (p‐distance = 7.5–8.5%) and weakly associated sister species (suggesting a single West African radiation) and both are sister clades to a well supported clade of central, East and northeast African members of the O. typus s.l. and O. tropicalis s.l. species complexes from mountain ranges comprising the East African ‘Montane Circle’ and Ethiopian Highlands. Re‐evaluation of the evolutionary origins of the allopatric Otomys populations in equatorial Africa is undertaken in light of fossil evidence of a southern African origin of the genus. We can conclude that Otomys reached the Cameroon Volcanic Line via corridors of temperate grasslands during the Late Pliocene. Our data support the hypothesis that, following major peripatric speciation events at around 2.3 to 2.03 Ma (from East Africa into West and North Africa respectively), further speciation occurred across neighbouring mountain ranges in West, Central‐East and North‐East Africa. Estimated molecular dates of speciation events in Otomys reveal close congruence with well‐constrained geochronological estimates, pertinently the uplift of the Albertine Rift in the Early Pleistocene. These regional analyses reveal how peripatric speciation events established narrow‐range endemics of Otomys on principal stratovolcanoes across the East African plateau and Cameroon. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 320–344.  相似文献   

13.
Phylogenetic relationships among eight of nine Myrmecocichla chat species were inferred from DNA data. Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported most branches in the phylogeny. Based on these results, Myrmecocichla, as currently defined, is not monophyletic. The results indicated that Myrmecocichla albifrons is part of a Cercomela + Oenanthe clade, whereas Oenanthe monticola is shown to be a Myrmecocichla. In addition, Myrmecocichla arnotti is shown to be polyphyletic. Phylogenetic analyses support three Southern versus Eastern or Northern speciation events. The dating of these speciation events suggests that they correspond to periods when the Afrotropical forests were expanded to coastal Kenya, 3–5 Mya. This forest expansion thus served as a vicariant driver of speciation in the genus, a result consistent with speciation patterns in other arid‐adapted African bird genera. Our haplotype analysis within one of the most widespread and habitat diverse Myrmecocichla species (formicivora, a southern African endemic) showed little genetic variation. Along with speciation patterns shown for Myrmecocichla and other avian genera, this lack of standing variation would appear to support large, inter‐regional drivers of speciation as having the largest effect on the diversification of arid‐adapted Africa bird species, which is in stark contrast to other vertebrate lineages whose genetic structure often shows strong intra‐regional effects. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 180–190.  相似文献   

14.
Phylogenetic relationships within the genus Muscisaxicola, a primarily Andean group of tyrant-flycatchers, were studied using complete sequences of the mitochondrial genes COII and ND3. Relationships among Muscisaxicola species were found to differ substantially from those of previous views, suggesting convergence in traditional avian taxonomic characters within the genus. The 11 species of large, gray, “typical” Muscisaxicola flycatchers (including M. grisea, newly restored to species status) formed a distinct clade, consisting of two major groups: a clade of 6 species breeding primarily in the central Andes and a clade of 5 species breeding primarily in the southern Andes. The other 2 species traditionally placed in this genus, M. fluviatilis, an Amazonian species, and M. maculirostris, were both rather divergent genetically from the typical species, although M. maculirostris may be the sister taxon to the typical clade. The patterns of sympatry exhibited by Muscisaxicola species in the high Andes appear to be the consequence of speciation and secondary contact within regions of the Andes, rather than a result of dispersal between regions. Diversification of the typical Muscisaxicola species appears to have occurred during the middle and late Pleistocene, suggesting generally that taxa of the high Andes and Patagonia may have been greatly influenced by mid-to-late Pleistocene events. There were likely several independent developments of migration within this genus, but migration is probably ancestral in the southern clade, with subsequent loss of migration in two taxa.  相似文献   

15.
Despite extensive focus on the genetic legacy of Pleistocene glaciation, impacts of earlier climatic change on biodiversity are poorly understood. Because amphibians are highly sensitive to variations in precipitation and temperature, we use a genus of Chinese montane salamanders (Salamandridae: Pachytriton) to study paleoclimatic change in East Asia, which experienced intensification of its monsoon circulation in the late Miocene associated with subsequent Pliocene warming. Using both nuclear and mitochondrial DNA sequences, we reconstruct the species tree under a coalescent model and demonstrate that all major lineages originated before the Quaternary. Initial speciation within the genus occurred after the summer monsoon entered a stage of substantial intensification. Heavy summer precipitation established temporary water connectivity through overflows between adjacent stream systems, which may facilitate geographic range expansion by aquatic species such as Pachytriton. Species were formed in allopatry likely through vicariant isolation during or after range expansion. To evaluate the influence of Pliocene warming on these cold-adapted salamanders, we construct a novel temperature buffer-zone model, which suggests widespread physiological stress or even extinction during the warming period. A significant deceleration of species accumulation rate is consistent with Pliocene range contraction, which affected P. granulosus and P. archospotus the most because they lack large temperature buffer zones. In contrast, demographic growth occurred in species for which refugia persist. The buffer-zone model reveals the Huangshan Mountain as a potential climatic refugium, which is similar to that found for other East Asian organisms. Our approach can incorporate future climatic data to evaluate the potential impact of ongoing global warming on montane species (particularly amphibians) and to predict possible population declines.  相似文献   

16.
Aim This study aims to initially explore the mode of speciation in Indo‐West Pacific Conus. Location The Indo‐West Pacific island arc, Indian and Pacific Oceans. Methods Relating evolutionary divergence in a molecular phylogeny [T.F. Duda & S.R. Palumbi (1999) Proceedings of the National Academy of Science USA, 96 , 10272] using node height with modern range extents as a possible measure of allopatric or sympatric speciation following that of T.G. Barraclough, A.P. Vogler & P.H. Harvey [(1999) Evolution of Biological Diversity. Oxford University Press, Oxford] models of sympatric and allopatric speciation. Results The analysis seems to indicate that the relationship of sympatry with node height is not informative. Species that have diverged quite recently show 100% sympatry with the sister species. A clearer signal of recent allopatric speciation is observed in species whose distribution is at the edge of the Indian and Pacific Ocean basins. In the widely distributed Conus ebraeus clade, the relationships of node heights and range extents of the member species support a key prediction of sympatric speciation. In highly ecologically specialized species, there is a smaller degree of sympatry than those species that are less specialized. Main conclusions The modes of speciation models presented in this study are not informative. This suggests that there had been large and possibly rapid changes in range size after speciation in the various clades. This could have been due to the fact that the wide dispersal life‐history strategy in the genus had been largely conserved in Conus evolution. There is evidence of sympatric and parapatric speciation in one Conus clade. Overall, the patterns of phylogeny and range distribution when related to the timing of speciation lend circumstantial support to a Neogene centre of origin hypothesis but not to speciation on the Pacific Plate. Speciation is likely to have been associated with the Tethys Sea closure event, with rapid speciation occurring after closure.  相似文献   

17.
Morphological analyses indicate that horsehose bats in the genus Rhinolophus constitute a monophyletic group which most likely originated in southeastern Asia but which presently inhabits Oriental, Australian, Palaearctic, and Ethiopian zoogeographical provinces. Ten species occur in southern Africa, but it is uncertain which species represent dispersals from Eurasia through North Africa and which have resulted from speciation in Africa. Analyses of 34 allozyme encoding loci in these 10 species and in 2 southern African species of leafnose bats in the sister genus Hipposideros reveal the presence of at least three lineages of Rhinolophus in southern Africa. One lineage includes R. clivosus, R. darlingi, R. fumigatus, and R. hildebrandtii, all of which, except R. clivosus, are endemic to sub-Saharan Africa. Rhinolophus blasii is genetically allied with, but distinct from this group, and appears to be a recent migrant from another lineage centered on the Mediterranean. A third lineage, including at least R. capensis, R. denti, R. simulator, and R. swinnyi, is endemic to sub-Saharan Africa. The phylogenetic position of R. landeri is uncertain, most likely because of the small sample size used to estimate allelic frequencies for this species. The biochemical genetic definitions of these lineages largely agree with previous morphological analyses of Rhinolophus species. Divergences between species within two lineages (R. clivosus, R. darlingi, R. fumigatus, and R. hildebrandtii; and R. capensis, R. denti, R. simulator, and R. swinnyi) appear to reflect two bursts of speciation in the Plio-Pleistocene period within Africa.  相似文献   

18.
Larison, B., Smith, T.B., Fotso, R. & McNiven, D. 2000. Comparative avian biodiversity of five mountains in northem Cameroon and Bioko. Ostrich 71 (1 & 2): 269–276.

Endemism among birds is widespread in the montane forests of western Cameroon and the Gulf of Guinea. The region includes some of the rarest and most threatened species in Africa. We conducted avian surveys of four previously unsurveyed montane sites in northern Cameroon, including Mt. Ngang-Ha, Hoséré Vokré, Tchabal Gandaba, and Tchabal Mbabo, as well as the northern slope of Caldera de Luba on the island of Bioko, Equatorial Guinea. We report here on avian species richness and relative abundance, and evaluate the conservation potential of each site based on avifaunal richness. The montane forest on both Tchabal Mbabo and Caldera de Luba is extensive, while on the other mountains, the vegetation is not characteristic of montane forest, and consists primarily of small gallery forests embedded in savanna. Tchabal Mbabo and Caldera de Luba had the greatest species richness and abundance of montane birds, while Tchabal Gandaba had the greatest overall avian species richness and abundance. Few montane species were noted on Mt. Ngang-Ha and Hosere Vokre, and avian abundance was quite low on both mountains. Of the mountains surveyed, Tchabal Mbabo and Caldera de Luba exhibit the greatest potential for conservation based on extent of montane forest, and montane species richness and abundance.  相似文献   

19.
《Palaeoworld》2016,25(4):581-599
Six Early Carboniferous brachiopod species in four genera of the Superfamily Spiriferoidea are described from the Qaidam Basin, northwestern China, including a new genus, Qaidamospirifer, and two new species: Grandispirifer qaidamensis and Qaidamospirifer elongatus. Additionally, a new genus, Triangulospirifer, is also proposed to replace Triangularia Poletaev, 2001 that was preoccupied by a Devonian molluscan genus.On the basis of the new material as well as published information, we have reviewed the taxonomic composition and the stratigraphic and palaeobiogeographic distributions of the three previously established genera from the viewpoint of palaeobiogeography. The study reveals that Grandispirifer has a relatively long stratigraphic range from the late Tournaisian to Serpukhovian. During this interval, the genus attained a wide geographical distribution, reaching Northwest China, western Yunnan of West China, Japan, as well as Iran and North Africa. Angiospirifer first occurred in western Europe in the Viséan, and later migrated to North Africa during the late Viséan. In the Serpukhovian, it migrated eastward, reaching the Donets Basin of Ukraine and the Qaidam Basin in Northwest China. Anthracothyrina evolved from Brachythyrina in North Africa in late Viséan, then dispersed north-westward to western and eastern Europe and, further eastward to the Qaidam Basin during the Serpukhovian.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号