首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
2.
To study the effect of chronic ethanol administration on the activity of gamma-glutamyltranspeptidase (GGTP) in various tissues, female rats were pair-fed liquid diets with 36% of total calories either as ethanol or isocaloric carbohydrate (controls). Six weeks of ethanol feeding in an increase of cytochrome P450 content by 70%. Hepatic microsomal GGTP activity was more than doubled after ethanol feeding whether expressed per gram of liver or per mg of microsomal protein. Furthermore intestinal GGTP activity was significantly enhanced after ethanol, whereas there was no change in the enzyme activity in either kidney or pancreas. Phenobarbital administration to rats also resulted in an enahancement of GGTP activity in the liver but not in the intestine. These results suggest that enhanced hepatic and intestinal GGTP activities may contribute, at least partly, to increased serum GGTP activity frequently seen in alcoholics.  相似文献   

3.
F R Ampy  A Asseffa 《Cytobios》1988,55(221):87-94
Previous investigations with BALB/c mice have demonstrated that no sex-related differences exist in the ability of liver microsomal fractions (S-9) to biotransform dimethylnitrosamine (DMN) to its active mutagenic metabolites as evidenced by bacterial screening assays. In contrast, kidney microsomal enzymes from adult male BALB/c mice and not from females, castrates, and immature animals, were capable of activating DMN. The present study was designed to test the effects of testosterone and oestradiol on DMN bioactivation by hepatic or renal microsomal enzymes. Mutagenic assays were performed using liver and kidney microsomal enzymes with the histidine deficient mutant Salmonella typhimurium TA100. Results indicate that testosterone treatment of female BALB/c mice resulted in an increase in the ability of their renal microsomal enzymes to metabolize DMN to its active mutagenic intermediates. Renal microsomal enzymes from female mice treated with 17 beta-oestradiol had no effect on DMN metabolism. However, the ability of the renal microsomal enzymes treated with 17 beta-oestradiol to bioactivate DMN was significantly decreased in males.  相似文献   

4.
Although 1, 10-phenanthroline (1, 10-P, 2 mg/100 g) prevents acute liver injury induced by dimethylnitrosamine (DMN), it does not protect female rats against liver damage caused by chronic treatment with DMN (2 mg/ 100 g). Liver damage was ascertained by measuring distribution and total activity of β-glucuronidase, rate of collagen synthesis, total collagen content of the liver, and amount of isocitric dehydrogenase (ICDH) in the serum. However, after simultaneous treatment with 1, 10-P and DMN for three weeks, the total amount of noncollagenous liver proteins and of microsomal protein and aniline hydroxylase activity were higher than in livers of rats receiving DMN alone. The proliferation of the smooth endoplasmic reticulum in livers of dogs treated for a 14-week period with 1, 10-P was demonstrated by ultrastructural techniques. Chronic liver injury induced by feeding female rats with a 0.3% d, 1-ethionine diet for five weeks was prevented by simultaneous administration of 1, 10-P (2 mg/100 g, i.p. 3 times weekly). It is suggested that when administered chronically, 1, 10-P acts as an inducer of the liver microsomal system and therefore increases the activity of liver mixed-function oxidases. This explains why chronic administration of 1, 10-P does not protect rats against injury caused by DMN. Ethionine hepatotoxicity, which does not seem to be related to the microsomal activity, is substantially decreased by as yet unknown mechanisms.  相似文献   

5.
Treatment with thyroxine or triiodothyronine for 7 days in order to simulate a hyperthyroid state results in an enhanced activity of the microsomal ethanol oxidizing system. Conversely, a decrease of hepatic alcohol dehydrogenase activity was observed under these experimental conditions, whereas hepatic catalase activity remained unchanged. These findings suggest that if chronic ethanol consumption simulates a “hyperthyroid hepatic state”, increased rates of ethanol metabolism observed following prolonged alcohol intake might therefore be attributed at least in part to an induction of microsomal ethanol oxidizing system activity in the liver.  相似文献   

6.
Long-Evans Cinnamon (LEC) rats exhibit a genetic defect in Atp7b gene, which is homologous to the human Wilson's disease gene, resulting in an inability to mobilize copper from the liver. This study was undertaken to gain insight into the relationship between liver copper accumulation and plasma lipid profile, circulating lipoprotein composition, hepatic sterol metabolism and biliary lipid secretion rates in 12-week-old LEC rats compared to control Long-Evans rats. Concomitant with hepatic copper deposition, LEC rats displayed increased content of triglycerides (TGs), free cholesterol (FC) and cholesteryl ester (CE) in the liver. Hepatic concentrations of malondialdehyde (MDA), an index of lipid peroxidation were also significantly elevated in LEC rats (50%). This steatosis was associated with aberrant microsomal apolipoprotein (apo) B-100 and microsomal triglyceride transfer protein (MTP) content, hypotriglyceridemia, hypocholesterolemia and abnormalities in both circulating lipoprotein composition and size. Atypical hepatobiliary sterol metabolism was established by the assessment of the activity of key intracellular enzymes for cholesterol homeostasis, which demonstrated, with respect to controls, a 40% reduction in 3-hydroxy-3-methylglutaryl coenzyme A reductase, a 30% reduction in cholesterol 7alpha-hydroxylase, and a 54% reduction in acyl CoA:cholesterol acyltransferase. During a 6-h biliary drainage, a decline in the bile acid output was recorded and might be linked to the low protein expression of the bile salt export pump (BSEP or ABCB11). Our data emphasize the crucial role of copper balance in hepatic sterol homeostasis and lipoprotein metabolism in LEC rats. Additional studies are needed to delineate the mechanisms of these disorders.  相似文献   

7.
Metabolic tolerance to ethanol has been attributed to enhanced mitochondrial reoxidation of reducing equivalents produced in the alcohol dehydrogenase (ADH) pathway or to non-ADH mechanisms. To resolve this issue, deermice lacking low Km hepatic ADH were fed for 2 weeks a liquid diet containing ethanol or isocaloric carbohydrate and hepatocytes were isolated. Ethanol (50 mM) oxidation increased (9.8 vs 4.5 nmol/min/10(6) cells in controls). To differentiate which of two non-ADH pathways (the microsomal ethanol oxidizing system (MEOS) or catalase) was responsible for the induction, four approaches were used. First, MEOS was assayed in hepatic microsomes and found to be increased (24.4 vs 6.8 nmol/min/mg protein in controls). Second, hepatocyte ethanol metabolism was measured after addition of the catalase inhibitor azide (0.1 mM) and found to be unchanged. By contrast, the competitive MEOS inhibitor, 1-butanol, depressed metabolism in a concentration-dependent manner. A third approach relied on measurement of isotope effects known to be different for MEOS and catalase. From the isotope effect values, MEOS was calculated to contribute 85% or more of total ethanol oxidation by cells from both ethanol-fed and control animals. A fourth approach involved in vivo pretreatment with pyrazole (300 mg/kg/day for 2 days), which reduced peroxidation by catalase to 13% of control values in liver homogenates while inducing MEOS activity to 152% of controls. Hepatocytes from pyrazole-treated deermice showed a 47% increase in ethanol metabolism, paralleling the MEOS induction and contrasting with the catalase suppression. These results indicate that since metabolic tolerance occurs in the absence of ADH, it is not necessarily ADH mediated, and further, that MEOS rather than catalase accounts for basal ethanol metabolism and its increase after chronic ethanol treatment.  相似文献   

8.
The biochemical basis for the marked difference in the rate of the hepatic metabolism of 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB) by Beagle dogs and Sprague-Dawley rats has been investigated. Control dog liver microsomes metabolize this substrate 15 times faster than control rat liver microsomes. Upon treatment with phenobarbital (PB), at least two cytochrome P-450 isozymes are induced in the dog, and the hepatic microsomal metabolism of 245-HCB is increased on both a per nanomole P-450 basis (twofold) and a per milligram protein basis (fivefold). One of the PB-induced isozymes, PBD-2, has been purified to a specific content of 17-19 nmol/mg protein and to less than 95% homogeneity, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In a reconstituted system containing cytochrome b5, this isozyme shows an activity toward 245-HCB which is greater than threefold that seen in intact liver microsomes from PB-induced dogs. A reconstituted system containing the major isozyme induced by PB in the rat (PB-B) metabolizes 245-HCB at 1/10 the rate observed with purified PBD-2. Antibody inhibition studies have shown that PBD-2 accounts for greater than 90% of the hepatic microsomal metabolism of 245-HCB in control and PB-induced dogs, while PB-B only accounts for about half of the metabolism of this compound by microsomes obtained from PB-treated rats. Immunoblot analysis has revealed that the level of PBD-2 in dog liver microsomes increases nearly sixfold with PB treatment, and this increase correlates well with the fivefold increase in the rate of hepatic microsomal metabolism of 245-HCB by dogs. Together these data support a primary role for isozyme PBD-2 in the hepatic metabolism of 245-HCB in control and PB-induced dogs. In addition, these results suggest that, in contrast to rats, dogs can readily metabolize 245-HCB as a result of the presence of a cytochrome P-450 isozyme with efficient 245-HCB metabolizing activity.  相似文献   

9.
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol.  相似文献   

10.
R/Amsterdam rats were offered a 15% aqueous ethanol solution as drinking fluid from delivery via the milk (Group A) or from the weanling (Group B). Ethanol treatment resulted in a significant retardation of growth in both Groups A and B compared to controls (Group C); the changes were more marked in Group A. Female rats responded to ethanol with higher increase of microsomal G6P-ase and mixed function oxygenase activities than males subjected to the same treatment. Hepatic triglyceride, glycogen and protein contents remained unaffected by ethanol. There was no difference in the changes of liver metabolism between Groups A and B either receiving ethanol already from birth via the milk or only after weanling.  相似文献   

11.
Three hexachlorobiphenyl isomers, 2,2′,4,4′,5,5′-hexachlorobiphenyl (I), 2,2′,3,3′,4,4′-hexachlorobiphenyl (II) and 2,2′,3,4,4′,5′-hexachlorobiphenyl (III), have been administered to rats and the effects of these three compounds upon hepatic microsomal drug metabolism and upon hepatic porphyrins have been studied. Comparisons have been made with hexachlorobenzene and a commercial polychlorinated biphenyl mixture, Aroclor 1254. From measurements of activities of microsomal drug oxidations in vitro, the durations of pharmacological actions of certain drugs in vivo and spectral shifts associated with cytochrome P-450 it is shown that the three pure hexachlorobiphenyl isomers initially produce changes in hepatic microsomal activity which resemble those seen after treatment with phenobarbitone (PB). In contrast, following chronic feeding of the isomers, compounds II and III but not I produce a pattern of hepatic microsomal enzyme activity which shows some characteristics of the 3-methylcholanthrene (3-MC) and some characteristics of the phenobarbitone classes of inducer. Also, compounds II and III, but not I, cause accumulation in the liver of porphyrins containing either seven or eight carboxyl groups. These two responses are similar to those observed following hexachlorobenzene treatment and suggest that a relationship may exist between the mixed pattern of enzyme induction and the onset of hepatic porphyrin accumulation.  相似文献   

12.
To further investigate the relationship between in vivo microsomal enzyme modifiers and in vitro dimethylnitrosamine (DMN) metabolism, male C57BL/6J mice were pretreated with acetone or Aroclor 1254, two compounds known to influence DMN-N-demethylase activity. Pretreatment with acetone enhanced the in vitro microsomal activity of DMN-N-demethylase, as measured by formaldehyde production from DMN. Accompanying this acetone-enhanced demethylase activity was an increase in the covalent binding of [14C]DMN to RNA, protein and DNA. Four distinct Km values dependent on the substrate concentration were observed for the N-demethylase present in control microsomes. Only one Km value was observed for the demethylase in microsomes from acetone-treated animals, but it was significantly lower than the lowest Km observed in the control microsomes. At DMN concentrations of 1 and 10 mM, acetone significantly increased N-demethylation of DMN as compared to control, but not at 100 mM DMN. Aroclor 1254 pretreatment repressed DMN-N-demethylase at 1 mM DMN but enhanced it at 100 mM. These results suggest that there may be multiple forms of DMN-N-demethylase which are dependent on DMN concentration and respond differently to modifiers of the microsomal drug-metabolizing enzymes.  相似文献   

13.
C S Lieber 《Enzyme》1987,37(1-2):45-56
Advances in our knowledge of the microsomal metabolism of ethanol enable us to understand a number of complications that develop in the alcoholic. After chronic ethanol consumption, microsomal ethanol-oxidizing system (MEOS) activity increases with an associated rise in microsomal cytochrome P-450, including a form different from that induced by phenobarbital and methylcholanthrene and which has a high affinity for ethanol, as shown in reconstituted systems. The role of this MEOS in vivo and its increase after chronic ethanol consumption was most conclusively shown in alcohol dehydrogenase-negative deer mice. Microsomal induction is also associated with enhanced metabolism of other drugs, resulting in metabolic drug tolerance. Furthermore, there is increased conversion to toxic metabolites of known hepatotoxic agents (such as CCl4), which may explain the enhanced susceptibility of alcoholics to the toxicity of industrial solvents. Furthermore, the ethanol-induced form of cytochrome P-450 has a high capacity for the conversion to toxic metabolites of some commonly used drugs, such as acetaminophen, and also carcinogens, such as dimethylnitrosamine which is activated at concentrations much lower than those required for other microsomal inducers. Moreover, catabolism of retinol is accelerated through a newly discovered microsomal pathway, thereby contributing to hepatic vitamin A depletion and possibly vitamin A toxicity. There is also induction of microsomal enzymes involved in lipoprotein production, resulting in hyperlipemia. Contrasting with the chronic effects of ethanol consumption, acutely, ethanol inhibits the metabolism of other drugs through competition for an at least partially shared microsomal detoxification pathway.  相似文献   

14.
The capacity of dimethylnitrosamine(DMN), and of DMN activated by a NADPH-fortified mouse liver microsomal preparation, to elicit DNA alterations in cultured human fibroblasts was examined. A maximum induction of DNA repair synthesis, estimated by unscheduled incorporation of tritiated thymidine, occurred following 60-minute incubation of the human cells with DMN activated by a NADPH-fortified mouse liver microsomal preparation. A low level of DNA repair activity followed exposure to DMN alone, or to DMN mixed with the microsomal preparation without NADPH or without O2. The extent of DNA damage, estimated by velocity sedimentation of DNA through alkaline sucrose gradients, was maximum following treatment with DMN mixed with the NADPH-fortified microsomal preparation. The combined application of in vitro activation systems and estimation of DNA repair synthesis in cultured cells may be exploited in the detection of precarcinogens.  相似文献   

15.
Isozyme 3a of rabbit hepatic cytochrome P-450, also termed P-450ALC, was previously isolated and characterized and was shown to be induced 3- to 5-fold by exposure to ethanol. In the present study, antibody against rabbit P-450ALC was used to identify a homologous protein in alcohol dehydrogenase-negative (ADH-) and -positive (ADH+) deermice, Peromyscus maniculatus. The antibody reacts with a single protein having an apparent molecular weight of 52,000 on immunoblots of hepatic microsomes from untreated and ethanol-treated deermice from both strains. The level of the homologous protein was about 2-fold greater in microsomes from naive ADH- than from naive ADH+ animals. Ethanol treatment induced the protein about 3-fold in the ADH+ strain and about 4-fold in the ADH- strain. The antibody to rabbit P-450ALC inhibited the microsomal metabolism of ethanol and aniline. The homologous protein, termed deermouse P-450ALC, catalyzed from 70 to 80% of the oxidation of ethanol and about 90% of the hydroxylation of aniline by microsomes from both strains after ethanol treatment. The antibody-inhibited portion of the microsomal activities, which are attributable to the P-450ALC homolog, increased about 3-fold upon ethanol treatment in the ADH+ strain and about 4-fold in the ADH- strain, in excellent agreement with the results from immunoblots. The total microsomal P-450 content and the rate of ethanol oxidation were induced 1.4-fold and 2.2-fold, respectively, by ethanol in the ADH+ strain and 1.9-fold and 3.3-fold, respectively, in the ADH- strain. Thus, the total microsomal P-450 content and ethanol oxidation underestimate the induction of the P-450ALC homolog in both strains. A comparison of the rates of microsomal ethanol oxidation in vitro with rates of ethanol elimination in vivo indicates that deermouse P-450ALC could account optimally for 3 and 8% of total ethanol elimination in naive ADH+ and ADH- strains, respectively. After chronic ethanol treatment, P-450ALC could account maximally for 8% of the total ethanol elimination in the ADH+ strain and 22% in the ADH- strain. Further, cytochrome P-450ALC appears to be responsible for about one-half of the increase in the rate of ethanol elimination in vivo after chronic treatment with ethanol. These results indicate that the contribution of P-450ALC to ethanol oxidation in the deermouse is relatively small. Desferrioxamine had no effect on rates of ethanol uptake by perfused livers from ADH-negative deermice, indicating that ethanol oxidation by a hydroxyl radical-mediated mechanism was not involved in ethanol metabolism in this mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

17.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

18.
Kim YC  Kim SY  Sohn YR 《Life sciences》2003,74(4):509-519
Age-dependent change in the effects of acute ethanol administration on female rat liver was investigated. Female Sprague-Dawley rats, each aged 4, 12, or 50 weeks, received ethanol (2 g/kg) via a catheter inserted into a jugular vein. Ethanol elimination rate (EER), most rapid in the 4 weeks old rats, was decreased as the age advanced. Hepatic alcohol dehydrogenase activity was not altered by age, but microsomal p-nitrophenol hydroxylase activity was significantly greater in the 4 weeks old rats. Relative liver weight decreased with age increase in proportion to reduction of EER. Hepatic triglyceride and malondialdehyde concentrations increased spontaneously in the 50 weeks old nai;ve rats. Ethanol administration (3 g/kg, ip) elevated malondialdehyde and triglyceride contents only in the 4 and the 12 weeks old rats. Hepatic glutathione concentration was increasingly reduced by ethanol with age increase. Ethanol decreased cysteine concentration in the 4 weeks old rats, but elevated it significantly in the older rats. Inhibition of gamma-glutamylcysteine synthetase activity by ethanol was greater with age increase, which appeared to be responsible for the increase in hepatic cysteine. The results indicate that age does not affect the ethanol metabolizing capacity of female rat liver, but the overall ethanol metabolism is decreased in accordance with the reduction of relative liver size. Accordingly induction of acute alcoholic fatty liver is less significant in the old rats. However, progressively greater depletion of glutathione by ethanol in older rats suggests that susceptibility of liver to oxidative damage would be increased as animals grow old.  相似文献   

19.
M Iwai  T Shimazu 《Life sciences》1988,42(19):1833-1840
The effects of hypothalamic stimulation on experimental liver injury induced by carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN) were studied in rats, by measuring plasma alanine aminotransferase (ALT) activity as an index of acute liver injury. Electrical stimulation of the ventromedial hypothalamus (VMH) in CCl4-treated rats caused a marked increase in plasma ALT activity, accompanied by a significant decrease in ALT activity in the liver, although CCl4 treatment alone had no significant effect on plasma ALT activity. A similar effect of VMH stimulation on plasma ALT activity was observed in rats treated with DMN, another hepatotoxic chemical. No such exaggerated effect of VMH stimulation on plasma ALT activity was observed after stimulation of the lateral hypothalamic area (LH). Surgical sympathetic denervation of the liver greatly suppressed the increase in plasma ALT activity after CCl4 injection and VMH stimulation. Measurement of regional blood flow indicated that VMH stimulation did not produce a significant change in blood flow to the liver. These results suggest that the VMH is involved in the progress of chemically-induced liver injury through activation of the sympathetic nerve (hepatic nerves), possibly by affecting liver metabolism more than the blood flow change to the liver.  相似文献   

20.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号