首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The anthers of three genotypes ofLycopersicon esculentum, viz. cv. HS-101, cv. HS-102 and an F1 hybrid (Montfavet 63-4xHS-101) in different stages of development were cultured in various defined nutritive media. Only anthers containing microspores in the early uninucleate stage were found to respond with the culture medium in the formation of androgenic callus. The DGII medium with 2 mg l−1 NAA and 1 mg 1−1 kinetin was found to be best for callus induction but MS medium supplemented with 2 mg l−1 2,4-D and 0.1 mg 1−1 BAP favoured proliferation and growth of the callus. The androgenic microspores followed the ‘B’ type pathway of androgenesis in the formation of callus. Induction of tracheids in the callus could be achieved by supplementing the basal medium with NAA and kinetin or 2,4-D and BAP. Initiation of vessel elements and cambium were favoured by addition of NAA and kinetin and that of the phloem in the presence of 2,4-D and BAP in the basal medium, suggesting that the hormonal requirements for production of different elements of the vascular system in androgenic callus are different. Although roots could be induced from the callus, shoot differentiation could not be achieved under cultural conditions.  相似文献   

2.
Seashore paspalum (Paspalum vaginatum Swartz) is a salt tolerant, fine textured turfgrass used on golf courses in coastal, tropical, and subtropical regions. A callus induction and plant regeneration protocol for this commercially important turfgrass species has been developed. Induction of highly regenerable callus with approximately 400 shoots per cultured immature inflorescence (1 cm in length) was achieved by culturing 0.2 cm segments on media with 3 mg l−1 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.1 or 1.0 mg l−1 benzylaminopurine (BA). A multifactorial experiment demonstrated the combination of 3 mg l−1 dicamba and 1.0 mg l−1 BA for induction of callus resulted in 12 times higher plant regeneration frequency compared to 3 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone or ten times higher plant regeneration frequency than the combination of 3 mg l−1 2,4-D and 1.0 mg l−1 BA. These results are expected to support the development of a genetic transformation protocol for seashore paspalum.  相似文献   

3.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

4.
A short-term regeneration system from leaf-base-derived callus of wheat (Triticum aestivum L.) was developed. Embryogenic callus formation and shoot regeneration were achieved from the first basal segments of 3–4-day-old seedlings. Callus formation frequency as well as plantlet regeneration frequency was dependent on the composition of basal medium and the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). MS medium with 2,4-D 4.5–9.0 mol l–1 was optimal for the culture of wheat leaf base. Effects of different combinations of plant growth regulators, which were added in either callus induction medium or shoot regeneration medium, were tested. Adding of BAP in callus induction medium shortened the time of shoot emergence but could not improve the producing of embryogenic calli and green plantlets. Optimal ratio of 2,4-D, BAP and NAA gave similar regeneration frequency to control. Existence of cytokinins in regeneration medium had no effect on increasing the regeneration frequency. The regenerants could grow to normal, fertile plants after they were transferred into soil.  相似文献   

5.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

6.
Development of suitable strategy to overcome genotypic limitations of in vitro regeneration in sorghum would help utilize high yielding but poor tissue culture responsive genotypes in genetic manipulation programmes. A factorial experiment was conducted with two explants (immature embryos and inflorescences), eight genotypes (five Sorghum sudanense and three Sorghum bicolor genotypes), three levels of 2,4-D (1 mg l−1, 3 mg l−1, and 5 mg l−1), and two levels of kinetin (0.0 mg l−1 and 0.5 mg l−1). The induced callus was transferred to the regeneration media with factorial combinations of IAA (1.0 mg l−1 and 2.0 mg l−1) and kinetin (0.5 mg l−1 and 1.0 mg l−1). S. sudanense regenerated at significantly higher frequency (38.91%) and produced shoots more intensely (2.2 shoots/callus) than S. bicolor (26.93%, 1.26 shoots/callus). Immature inflorescences regenerated at a much higher frequency (46.48%) and produced significantly more number of shoots (2.71 shoots/callus) than immature embryos (22.35%, 0.99 shoots/callus). Moreover, differences for plant regeneration between genotypes of the same species were minimal when using immature inflorescences. Increase in the 2,4-D concentration in callus induction media exhibited inhibitory effect on callus induction, growth, shoot induction and number of shoots/callus but inclusion of kinetin in callus induction media improved these responses. Use of immature inflorescence explant and inclusion of kinetin in callus induction media could overcome genotypic limitations of plant regeneration to a large extent. The extent of variability, heritability and expected genetic advance was more in plant regeneration traits than in callus induction traits. This indicated that the variability in respect of these attributes in the genotypes may be due to the additive gene action and selection of genotypes for these characters would be rewarding.  相似文献   

7.
Plantlets of the mulberry (Morus alba L. vars. Chinese White, and Kokuso-27) were produced from callus cultures. For callus induction, leaf, internodal segments, and petiole explants of Chinese White, Kokuso-27 and Ichinose varieties were grown on MS basal medium fortified with 2,4-D and 6-benzylaminopurine (BA). Callogenesis was dependent on the nature of explant used, the genotype and growth regulators supplemented in the medium. Leaves were the best explant type used for callus induction. Best callogenesis was obtained on MS medium containing a combination of 1 mg l−1 2,4-D and 0.5 mg l−1 BA (95-100%). Calluses formed shoots on MS medium supplemented with 1 mg l−1 BA. Supplementation with 0.1 mg l−1 2,3,5-triiodobenzoic acid (TIBA) in this medium enhanced shooting response. Presence of TIBA in the medium also improved the long-term organogenic potential of the callus. Regenerated shoots produced roots on Murashige & Skoog (MS) medium containing either 0.5 mg l−1 indole-3-butyric acid (IBA) or α-naphthaleneacetic acid (NAA). Seventy percent of the rooted plants were established in the field where they are performing well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In order to determine the most suitable in vitro tissue culture and plant regeneration conditions for the small flowered willow herb (Epilobium parviflorum Schreb), various explants were cultured on semi-solid MS media containing factorial combinations of plant growth regulators. Callus induction from hypocotyl, cotyledon, petiole and leaf explants was achieved on media containing 2,4-dichlorophenoxy acetic acid (2,4-D) and kinetin (KIN). All other growth regulator combinations [□-naphtaleneacetic acid (NAA) ± benzylaminopurine (BAP), NAA ± thidiazuron (TDZ), indol acetic acid (IAA) ± Zeatin (ZEA)] tested failed to respond. The best results with cotyledon- and petiole- derived callus were obtained from MS medium supplemented with 1.0 mg l?1 2,4-D + 0.1 mg l?1 KIN and 2.0 mg l?1 2,4-D + 0.2 mg l?1 KIN. It was observed that B5 basal medium was more effective than MS basal medium for producing seedling and the most effective seed sterilizing solution was 25 % (v/v) sodium hypochlorite (NaOCl). No plant regeneration was observed in either callus induction or during the subculturing stage. This is the first report on in vitro tissue culture study within the genus Epilobium.  相似文献   

9.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

10.
Summary This study was conducted to establish and optimize a regeneration system for adapted U.S. rice genotypes including three commercial rice cultivars (LaGrue, Katy, and Alan) and two Arkansas breeding lines. Factors evaluated in the study were genotype, sugar type, and phytohormone concentration. The system consisted of two phases, callus induction and plant regeneration. In the callus induction phase, mature caryopses were cultured on MS medium containing either 1% sucrose combined with 3% sorbitol or 4% sucrose alone, and 0.5 to 4 mg·L−1 (2.26 to 18.10 μM) 2,4-D with or without 0.5mg·L−1) (2.32 μM) kinetin. In the plant regeneration phase, callus was transferred to 2,4-D-free MS medium containing 0 or 2 mg·L−1 (9.29 μM) kinetin combined with 0 or 0.1 mg·L−1 (0.54 μM) NAA. Callus induction commenced within a week, independent of the treatments. Callus growth and plant regeneration, however, were significantly influenced by interactions among experimental factors. Generally, the greatest callus growth and plant regeneration were obtained with 0.5 mg·L−1 (2.26 μM) 2,4-D and decreased with increasing 2,4-D concentrations. Kinetin enhanced callus growth only when combined with 0.5 mg·L−1 (2.26 μM) 2,4-D, and 4% sucrose. Inducing callus on kinetin-containing medium generally enhanced regeneration capacity in the presence of sucrose but not with a sucrose/sorbitol combination. Media containing sucrose alone generally supported more callus proliferation, but the sucrose/sorbitol combination improved regeneration of some cultivars. NAA and kinetin had little effect on regeneration.  相似文献   

11.
We report the first protocol for callus induction and shoot regeneration for Phaseolus lunatus L. cv. Wonder Bush and cv. Pole Sieva. We used different explants viz., epicotyls, cotyledons and hypocotyls. The medium used was MS basal medium with thidiazuron (0.5 mg l−1) and IAA (0.05 mg l−1) for the induction of callus followed by BAP (1.0 mg l−1) for the induction of shoots. Epicotyl explants showed the fastest response and the highest percentage of shoot regeneration. This protocol opens new biotechnological strategies to transfer economically important genes to this important crop species.  相似文献   

12.
Summary Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.  相似文献   

13.
An in vitro protocol for efficient plant regeneration has been developed from mature embryo explants of highland barley (Hordeum vulgare L. var. nudum Hk. f.) under endosperm-supported culture. Embryos with (endosperm-supported culture, ES) or without endosperm (non-endosperm-supported culture, NES) were excised from mature seeds and cultured on MS medium supplemented with various concentrations of 2,4-D (1–5 mg l−1) for callus induction. The percentage of callus induction from ES explants was significantly (P < 0.05) lower than that from NES. The highest frequency (97.6%) of callus induction was obtained from NES explants on MS medium containing 3 mg l−1 2,4-D. When the primary calli were maintained at a reduced concentration of 2,4-D (0.5 mg l−1) for 3 weeks, embryogenic calli were formed. The embryogenic calli were then transferred to MS medium supplemented with different concentrations of BA (1–5 mg l−1) and 500 mg l−1 casein hydrolysate (CH) for shoot regeneration. However, the capacity of plant regeneration from ES explant-derived calli was significantly (P < 0.05) higher than that from NES. The best response (81.3%) was observed from ES explant-derived calli on MS medium containing 2 mg l−1 BA. Regenerated plantlets with well-developed root systems were transferred to pots where they grew well, attained maturity and produced fertile seeds. This method could be employed for genetic manipulation studies.  相似文献   

14.
A procedure for in vitro culture of the parasitic flowering plant western hemlock dwarf mistletoe, Arceuthobium tsugense (Rosend.) G.N. Jones subsp. tsugense, is described. A factorial experiment evaluated the effects of media (Harvey's medium (HM) and modified White's medium (WM)), temperatures (15 °C and 20 °C), presence or absence of light, and plant growth regulators (the auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the cytokinin 6-benzylaminopurine (BAP) at varying concentrations (0.001 mg l−1 to 1 mg l−1)). Seed explants germinated in less than one week in culture and produced radicles. Optimal conditions for radicle elongation were WM at 20 °C in the presence of light and without plant growth regulators. Some of the radicles split at the tip to yield callus while others swelled to become spherical holdfasts. Holdfasts were also produced at the tips of radicles, and callus arose from split holdfasts. Factors that promoted holdfast production were Harvey's medium, light, and 2,4-D at 1 mg l−1. Callus development from split radicles and split holdfasts was optimal on WM with 0.5 mg l−1 2,4-D and 1 mg l−1 BAP at 20 °C in the dark. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
An efficient micropropagation system for mining ecotype Sedum alfredii Hance, a newly identified Zn/Cd hyperaccumulator, was developed. Frequency of callus induction reached up to 70% from leaves incubated on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzyladenine (BA), and 83% from internodal stem segments grown on MS medium with 0.1 mg l−1 2,4-D and 0.1 mg l−1 BA. Callus proliferated rapidly on MS medium containing 0.2 mg l−1 2,4-D and 0.05 mg l−1 thidiazuron. The highest number of adventitious buds per callus (17.3) and frequency of shoot regeneration (93%) were obtained when calli were grown on MS medium supplemented with 2.0 mg l−1 BA and 0.3 mg l−1 α-naphthalene acetic acid (NAA). Elongation of shoots was achieved when these were incubated on MS medium containing 3.0 mg l−1 gibberellic acid. Induction of roots was highest (21.4 roots per shoot) when shoots were transferred to MS medium containing 2.0 mg l−1 indole 3-butyric acid rather than either indole 3-acetic acid or NAA. When these in vitro plants were acclimatized and transferred to the greenhouse, and grown in hydroponic solutions containing 200 μM cadmium (Cd), they exhibited high efficiency of Cd transport, from roots to shoots, and hyperaccumulation of Cd.  相似文献   

16.
Summary Shoot regeneration was achieved from leaf derived callus of Dianthus chinensis using Phenylacetic acid (PAA). Callus from basal leaf segments, raised on Murashige and Skoog's (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) or 1-Naphthaleneacetic acid (NAA) in combination with 6-benzylamino purine (BAP), was subcultured on medium supplemented with BAP in combination with 2,4-D, NAA or PAA. Shoots were induced only when leaf derived callus was subcultured on medium containing BAP (2.0, 5.0 mg/l) in combination with PAA (0.5, 1.0 mg/l). No shoot regeneration was observed when 2,4-D, NAA or BAP were used in the medium either singly or in different combinations. These results demonstrate that PAA in combination with BAP was essential to trigger shoot regeneration from cultured leaf callus of D. chinensis.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - DPX dibutylphthalate xylol - MS Murashige and Skoog (1962) basal medium - NAA 1-Naphthaleneacetic acid - PAA Phenylacetic acid  相似文献   

17.
Culture conditions for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Ranunculus kazusensis are described. Zygotic embryos formed white nodular structures and pale-yellow calluses at a frequency of 84.9% when cultured on half-strength Schenk and Hildebrandt (SH) medium supplemented with 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). However, the frequency of white nodular structure and off-white callus formation decreased with an increasing concentration of 2,4-D up to 10 mg l−1, when the frequency reached 25%. Cell suspension cultures were established from zygotic embryo-derived pale-yellow calluses using half-strength SH medium supplemented with 0.1 mg l−1 of 2,4-D. Upon plating onto half-strength SH basal medium, over 90% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity at a survival rate of over 90% in a growth chamber. The plant regeneration system established in this study can be applied to mass propagation and conservation of this species.  相似文献   

18.
Explants of four F1 hybrids (OMR 36-41/1, OMR 36-41/2, OMR 36-41/4 and OMR 36-41/5) and two cultivars (Rayong 1 and Rayong 60) of cassava (Manihot esculenta Crantz) were subjected to different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), kinetin (KIN) and N6-benzylaminopurine (BAP) to induce somatic embryogenesis, organogenesis and micropropagation. Shoot apices of the F1 hybrids exhibited higher frequency (62 – 74 %) of proliferation of somatic embryos than the cultivars (21 – 43 %) in Murashige and Skoog basal medium supplemented with 8 mg dm−3 2,4-D and 0.5 mg dm−3 NAA. Nodal explants of regenerated plantlets were rapidly micropropagated with 90 % efficiency on a medium containing 0.1 mg dm−3 NAA and 0.05 mg dm−3 BAP irrespective of explant source. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A protocol was developed for regeneration and Agrobacterium-mediated genetic transformation of Lesquerella fendleri. Calli were first induced from hypocotyls and cotyledons on MS plus 0.5 mg l−1 BA, 1 mg l−1 NAA and 1 mg l−1 2,4-D, then co-cultivated for 2–3 days in darkness on MS supplemented with 0.5 mg l−1 BA, 0.2 mg l−1 NAA and 100 μmol l−1As together with Agrobacterium tumefaciens strain EHA105/pCAMBIA1301 that harbored genes for uidA (GUS) and hygromycin resistance. Following co-cultivation, calli transfected by A. tumefaciens were transferred to MS with 0.5 mg l−1 BA, 0.2 mg l−1NAA, 500 mg l−1 Cef and 10 mg l−1 hygromycin and cultured for 10 days, then the hygromycin was increased to 20 mg l−1 on the same medium. After 4 weeks the resistant regenerants were transferred to MS with 0.5 mg l−1BA, 0.2 mg l−1 NAA, 500 mg l−1 Cef and 25 mg l−1 hygromycin for further selections. Transgenic plants were confirmed by polymerase chain reaction analysis, GUS histochemical assay and genomic Southern blot hybridization. With this approach, the average regeneration frequency from transfected calli was 22.70%, and the number of regenerated shoots per callus was 6–13. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for improvement of this Lesquerella species.  相似文献   

20.
In the present study an efficient somatic embryogenesis method has been developed in Catharanthus roseus. Friable embryogenic callus was induced from hypocotyl of in vitro germinated seeds on Murashige and Skoog basal nutrient media supplemented with various auxins particularly 2,4-D (1.0 mg l−1). However, only NAA (1.0 mg l−1) produced somatic embryos in cultures. Embryo proliferation was even high on the same medium added with BAP. Cotyledonary somatic embryo germinated and converted into plantlets in BAP (0.5 mg l−1) added medium following a treatment with gibberellic acid (1.0 mg l−1) for maturation. Carbon sources and concentrations had a marked influence on maturation process. Plantlet conversion was better achieved when embryos were matured on 3% fructose or 3–6% maltose. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as raw material, genetic modification to embryo precursor cell may improve alkaloid yield further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号