首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Black alder seedlings were grown from seed for 7 weeks in six soils limed to various pH levels and inoculated withFrankia in two inoculation-seeding time combinations (inoculated and seeded concurrently; inoculated then seeded 5 weeks after inoculation). Three mine soils and three non-mine soils were used. Soil pHs in the study ranged from 3.6 to 7.6. In the second inoculation-seeding time combination, a series of soil samples at each of the pH levels below 7.0 were relimed to pH 7.0 immediately prior to seeding. The purpose of the study was to examine the effects of soil acidity on the nodulation of black alder byFrankia and the viability ofFrankia in acid soils. Based on the average number of nodules established per seedling, soil pH was determined to be a significant factor affecting nodulation in the mine soils. The highest levels of nodulation occurred between soil pH 5.5 and 7.2. Below pH 5.5, nodulation was reduced. There was also evidence of decreased viability of the endophyte below pH 4.5.  相似文献   

2.
Summary The inoculation ofAlnus rubra (red alder) withFrankia sp. can lead to a highly efficient symbiosis. Several factors contribute to the successful establishment of nitrogenfixing nodules: (1) quantity and quality ofFrankia inoculant; (2) time and method of inoculation; (3) nutritional status of the host plant.Frankia isolates were screened for their ability to nodulate and promote plant growth of container-grown red alder. Inoculations were performed on seedlings and seeds. Apparent differences in symbiotic performance could be seen when seeds or seedlings were inoculated. Plants inoculated at planting performed significantly better than those inoculated four weeks later in terms of shoot height, nodule number and shoot dry weight. If inoculation was delayed further, reduction in shoot height, nodule number and shoot dry weight resulted. The effect of fertilizer was also investigated with regard to providing optimal plant growth after inoculation. Plants receiving 1/5 Hoagland's solution minus nitrogen showed maximal plant growth with abundant nodulation. Plants receiving 1/5 Hoagland's solution with nitrogen showed excellent plant growth with significantly reduced nodulation.  相似文献   

3.
The relationship between numbers of rhizobia and nodulation response of legumes is of considerable practical importance. Experiments were done under controlled conditions to determine the influence of numbers of Rhizobium leguminosarum biovar. trifolii on nodulation of arrowleaf clover (Trifolium vesiculosum Savi.) and crimson clover (T. incarnatum L.). Numbers of rhizobia in excess of 1000 per seed did not substantially increase earliness of nodulation or total number of nodules formed on the taproot. Nodules, however, were formed nearer the top of the taproot as numbers of rhizobia increased to 100,000 per seed. Delayed inoculation experiments indicated that nodulation sites for these clovers only remained susceptible to infection for less than 1 day. Delaying inoculation for 4 days resulted in only a 1 to 2 day delay in nodulation for arrowleaf and crimson clovers respectively and no delay for subterranean clover (T. subterraneum L.). Apparently, larger seedlings nodulated faster.  相似文献   

4.
In areas with short growing seasons, poor early vegetative growth of soybean (Glycine max [L.] Merr.) is often attributed to the restrictive effect of cool soil conditions on nodulation and N2-fixation by this subtropical grain legume. However, there are few studies regarding potential genetic variability of soybean and Bradyrhizobium japonicum genotypes for nodulation at cool root-zone temperatures (RZT). Experiments were conducted to (1) test for a threshold temperature for low RZT inhibition of soybean nodulation and (2) ascertain whether this threshold temperature response depends mainly on the micro- or macrosymbiont. In experiment 1 soybean seedlings (Glycine max [L.] Merr. cv. Maple Arrow) were inoculated with 1 ml of a log phase culture of B. japonicum strain 532C, H8 or H15 (the latter two strains were isolated from cold soils of Hokkaido, northern Japan) and maintained at either 16, 17.5, 19 or 25°C RZT. In experiment 2 seedlings of cv. Maple Arrow and a cold-tolerant Evans isoline were combined with strain 532C and two Hokkaido strains (H5, H30) at both 19 and 25°C RZT. Results indicated that N2-fixation at 44 days after inoculation was substantially reduced (30–40%) by RZT as high as 19°C, due to development of less nodule mass and to a delay in the onset of N2-fixation and a small decrease in the number of nodules formed. However, the number of nodules formed was sharply reduced and the time required for the first appearance of nodules was significantly delayed below an RZT of 17.5°C. Differences between cultivars for nodulation and N accumulation were apparent at 25°C, but were abolished by growth at 19°C, indicating that, in spite of differences in growth potential between the cultivars under optimum RZT, both cultivars were equally limited by low RZT. Differences between B. japonicum strains were consistent across temperatures and were largely attributable to higher rates of specific nodule activity recorded for strain 532C, which seemed well adapted to low RZT. These results suggest that the host plant mediates the sensitivity of N2-fixation under low RZT and that inoculation with B. japonicum strains from cold environments is unlikely to enhance soybean N2-fixation under cool soil conditions.  相似文献   

5.
Factors affecting the establishment of Alnus/Frankia symbioses were studied partly by following the survival ofFrankia strains exposed to different soil conditions, and partly by investigating the effect of pH on nodulation. TwoFrankia strains were used, both of the Sp type (sporangia not formed in nodules). One of the strains sporulated heavily, while the other formed mainly hyphae. The strains originated fromAlnus incana root nodules growing in soils of pH 3.5 and 5.0. The optimum pH for their growth in pure culture was found to be 6.7 and 6.2, respectively. The strains were introduced into twoFrankia-free soils, peat and fine sand. Their survival, measured as the persistance of nodulation capacity using the plant infection technique, was followed for 14 months. The survival curves of the strains were similar despite the morphological differences between the strains in pure culture. The nodulation capacities declined over time both at 14 and 22°C. Survival was better in soils limed to a pH above 6 than in soils at their original pH (peat 2.9, fine sand 4.2). The effect of pH on nodule formation in Alnus seedlings by theFrankia strains was studied in liquid culture. The number of nodules increased linearly within the pH range studied (3.5–5.8). No nodules were formed at pH 3.5.  相似文献   

6.
This work studied the effects of P fertilization on nodulation of field-grown soybean by two Bradyrhizobium strains (SMGS1 and THA7), and checked if differences between strains were consistent with bacterial growth and growth pouch nodulation ability in response to P availability. In the field, nodule dry weight and nitrogen fixation activity of inoculated soybean were studied on typical acid soils of Thaïland at the flowering (R1) stage and at the end of grain filling. Grain yield, growth and phosphorus content were recorded. The bradyrhizobial strains were cultivated in culture medium, and growth parameters recorded. Nodulation patterns were observed during growth pouch experiments: infective root cells were inoculated with strains cultivated at two P concentrations in their culture media, namely 1 M and 1 mM. Ten days after inoculation, the position of each nodule was measured relative to the root tip (RT) mark, expressed relative to the smallest emerging root hairs-RT distance in the nodulation frequency profile, and the consistency of responses was tested. In the field, on P deficient soils, dry weight of nodules was higher with Bradyrhizobium japonicum strain SMGS1 than with strain THA7. P supply increased the number and dry weight of nodules for both strains, with a higher dry weight response for THA7 than for SMGS1. It also had a positive effect on tissue phosphorus status and grain yield at R8 stage. In growth media, significant differences were recorded between strains under P-limiting conditions: The growth rate was higher for strain SMGS1, as well as the maximal number of bacterial cells supported. With growth pouch, inoculating plants with bacteria grown in P-deficient medium resulted in a less intense nodulation of roots by THA7, and with nodules appearing earlier on roots than in the case of SMGS1. At 1 mM P, there was no significant difference between strains. Thus, strain THA7 is more affected by P deficiency than strain SMGS1. Although P was not supplied in the same way in the soil and in the growth pouch experiments, this consistency of behaviour between work scales indicates that phosphorus availability is a key component for a successful inoculation. Furthermore, the study of bacterial growth rates and nodulation profile represents an interesting step for bacterial screening for low P soils. [-11pt]  相似文献   

7.
Summary Conditions and techniques for achieving good nodulation ofPhaseolus vulgaris L. in continuously aerated solution were developed from greenhouse experiments.If nodules had been established, their growth and activity and the growth of the plant were at least as good in solution culture as in gravel culture. Nodule formation was observed within 10 days of inoculation in small volumes of solution culture (1 liter). In large volumes (19 liters), similarly prompt nodulation occurred only if the plants were inoculated before or immediately after the seedlings were transferred to the solution from gravel or vermiculite; and the nodules were restricted to the roots that had been present at the time of transfer. Delayed inoculation, 2 days after transfer to large volume solutions, led to sparse nodulation observed only after 3 weeks. Delay or inhibition of nodulation in large volumes of solution could not be explained by failute of bacteria to colonize roots or by sparsity of root hairs.Nodule initiation in solution culture was severely inhibited at pH below 5.4. An additional problem in growing N2-dependent bean in solution culture was the buildup of Cl to toxic levels in the plant in nitrate-free media, even at solution concentrations as low as 0.4 mM Cl. Daily addition of 0.5 to 1.0 mg N per plant delayed nodule growth and activity slightly, but increased plant growth and alleviated the severe N-deficiency that otherwise developed before the onset of N2-fixation.  相似文献   

8.
Nodulation (mean number of nodules per seedling) was 5 times greater for Elaeagnus angustifolia than for Alnus glutinosa overall when seedlings were grown in pots containing either an upland or an alluvial soil from central Illinois, USA. However, the upland Alfisol had 1.3 times greater nodulation capacity for A. glutinosa than for E. angustifolia. The presence of A. glutinosa trees on either soil was associated with a two-fold increase in nodulation capacity for E. angustifolia. Nodulation increases for soils under A. glutinosa were obtained for A. glutinosa seedlings in the Alfisol, but decreased nodulation for A. glutinosa seedlings occurred in the Mollisol. Greatest nodulation of E. angustifolia seedlings occurred near pH 6.6 for soil pH values ranging from 4.9 to 7.1, while greatest nodulation of A. glutinosa occurred at pH 4.9 over the same pH range. Nodulation was not affected by total soil nitrogen concentrations ranging from 0.09 to 0.20%. Mollisol pH was significantly lower under A. glutinosa trees than under E. angustifolia trees. For 4- to 8-year-old field-grown trees, A. glutinosa nodule weights were negatively correlated with soil pH, while for similar aged E. angustifolia trees nodulation in the acidic Alfisol was not detected.  相似文献   

9.
This work was designed to determine the role of the acidity and aluminium stress in the selection of partners in the Acacia symbioses with relevance to the persistence of the microsymbiont Bradyrhizobium in the soil and the growth and nodulation of the host plant respectively. Fifteen strains of Bradyrhizobium from Acacia mangium and Faidherbia albida formed a very homogenous acid tolerant group as indicated by their ability to grow better in a medium at pH 4.5 than in a medium at pH 6.8. By contrast, a growth experiment using an acid liquid media (pH 4.5), containing different concentrations of aluminium successfully identified strains sensitive to aluminium toxicity and those able to grow even in the presence of 100 M AlCl3.Our results suggest that high amounts of aluminium in the soil rather than acidity (pH 4.5) were a major soil factor for selection of Bradyrhizobium strains capable of establishing a permanently high population under natural conditions.Unlike the behaviour of the microsymbiont, growth and nodulation of Acacia mangium and Faidherbia albida were not affected by aluminium, even at 100 M, but they might be significantly affected by medium acidity (pH 4.5) depending on plant provenances. It is therefore suggested that ability of the host plant to tolerate acidity stress should be taken into account first when screening effective Acacia-Bradyrhizobium combinations for use in afforestation trials.  相似文献   

10.
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.  相似文献   

11.
Effects of soil acidity on groundnut-Bradyrhizobium symbiotic performance were studied in a potted, sandy soil in a glasshouse in Zimbabwe. The soil was limed to soil-pH levels of 5.0 and 6.5. Soil acidity negatively affected plant development, measured as leaf area and plant dry weight, while nodulation was enhanced. This acidity-enhanced nodulation was most evident when nodulation was caused by the indigenousBradyrhizobium population. Effects of soil acidity differed between groundnut cultivars andBradyrhizobium spp. strains, the former having greater importance. TwoArachis hypogaea L. Spanish-type cultivars, Falcon and Plover, performed equally well at neutral soil pH, but Falcon was more acid tolerant. Comparison of the symbiotic performance in neutral versus acid soil of twoBradyrhizobium spp. strains, MAR 411 (3G4b20) and MAR 1510 (CB 756), showed that MAR 411 performed superiorly in neutral soil, but MAR 1510 in acid soil. The indigenousBradyrhizobium population was more effective than was inoculation with strains MAR 411 or MAR 1510. Comparison of twelveBradyrhizobium spp. strains for their symbiotic performance in acid soil showed that some strains were totally ineffective under acidity stress (MAR 253, MAR 967 and MAR 1506), while others performed well.Bradyrhizobium spp. strain MAR 1576 (32 H1) ranked highest for nitrogen accumulation, plant dry weight and leaf area, with strains MAR 1555 (TAL 11) and MAR 1510 following closely. Nitrate fertilisation of groundnut plants led to soil alkalinisation, while nitrogen fixation resulted in soil acidification. Soil acidity in combination with soil sterilisation gave rise to symptoms associated with Al and Mn toxicity.  相似文献   

12.
于浩  陈展  尚鹤  曹吉鑫 《生态学报》2017,37(16):5418-5427
外生菌根真菌能够提高宿主植物对外界环境胁迫的抵抗力。主要探讨野外条件下外生菌根真菌对酸雨胁迫下马尾松(Pinus massoniana)幼苗生长、养分元素以及表层土壤的影响,以期为酸雨严重区马尾松林恢复提供科学依据。以2年生马尾松幼苗为材料,采用原位试验,共设置6个处理:p H5.6(对照)处理未接种、对照处理接种、p H4.5酸雨处理未接种、p H4.5酸雨处理接种、p H3.5酸雨处理未接种、p H3.5酸雨处理接种。研究表明:(1)酸雨处理与对照处理相比显著降低了非菌根苗总生物量及各部位生物量(根、茎、叶),对株高无显著影响,接种外生菌根真菌可以缓解酸雨对马尾松幼苗生长的不利影响;(2)与对照处理相比,酸雨处理的非菌根苗的针叶中N、P、Ca含量升高,Mg含量降低,根系中N、P、Ca含量降低,Mg含量随p H的降低先升高后降低。接种外生菌根真菌显著提高了p H3.5酸雨处理的马尾松幼苗根系中N、P、Ca、Mg含量,而对针叶中N、P、Ca、Mg含量无显著影响。(3)在非菌根土壤中,p H3.5酸雨处理与对照处理相比显著降低了土壤中有机质、速效磷、速效钾、可溶性碳、可溶性氮、铵态氮、硝态氮含量,而接种外生菌根真菌显著提高了上述指标。酸雨对土壤阳离子交换量无显著影响。总而言之,接种外生菌根真菌促进了酸雨处理的马尾松幼苗生长、缓解了酸雨对马尾松幼苗养分元素和表层土壤的不利影响,由此可见接种外生菌根真菌是减轻酸雨对马尾松危害的一个重要途径。  相似文献   

13.
《Plant science》1988,57(1):73-81
Agrobacterium rhizogenes wild type strain 8196 induced root growth at the site of stab-wounding on 5-day-old seedlings of red clover (Trifolium pratense), siratro (Macroptilium atropurpureum, a tropical forage legume), and alfalfa (Medicago sativa). Excised roots grew rapidly on hormone-free medium, were highly branched, and lacked geotropism. Paper electrophoresis of the root extracts confirmed the presence of opines. Confirmed transformed roots still proliferating from the wound site, were inoculated with Rhizobium and compared with inoculated non-transformed roots on seedlings raised under identical conditions. Nodulation was inhibited in the transformed roots. Control experiments using mixed inoculation of Rhizobium and Agrobacterium even at a ratio of 1:1000 on control seedlings showed no inhibition of nodulation, suggesting that the observed inhibition of nodulation on transformed roots was a result of the Ri T-DNA rather than the Agrobacterium rhizogenes in the tissue.  相似文献   

14.
Two experiments were carried out to evaluate the effect of acidity on bean-Rhizobium competition for nodule sites. SevenPhaseolus vulgaris host cultivars differing in acid-pH tolerance were grown in sand culture, and irrigated using a sub-irrigation system and nutrient solutions of pH 4.5, 5.0, 5.5, and 6.0. A mixed inoculant of two antibiotically markedRhizobium leguminosarum bvphaseoli strains CIAT899 (acid-tolerant) and CIAT632 (acid-sensitive) was used. The acid-tolerant CIAT899 dominated CIAT632 in nodule occupancy across all cultivars and pH treatments. Although several of the varieties had previously been identified as PH-tolerant, and these cultivars performed better than those reported to be acid sensitive, all showed a marked increase in nodulation and plant development when the pH was raised from 4.5 to 6.0. The second experiment using a modified Leonard jar system varied the inoculation ratio between CIAT899 and UMR1116 (acid-sensitive, inefficient in N2-fixation) and contrasted nodulation response for the bean varieties Preto 143 (pH-tolerant) and Negro Argel (pH-sensitive) at 3 pH treatments (4.5, 5.5, 6.5). There was a significant effect of host cultivar, ratio of inoculation, and pH on the percentage of nodule occupancy by each strain. At low pH CIAT899 had higher nodule occupancy than UM1116 in the variety Negro Argel but had the same percentage of nodulation when the variety was Preto 143. Increasing the cell concentration of UMR1116 produced more inefficient nodules at all treatment combinations and reduced plant growth for both cultivars used.  相似文献   

15.
Zimpfer  J. F.  Kaelke  C. M.  Smyth  C. A.  Hahn  D.  Dawson  J. O. 《Plant and Soil》2003,254(1):1-10
The effects of soil biota, Frankia inoculation and tissue amendment on nodulation capacity of a soil was investigated in a factorial study using bulked soil from beneath a Casuarina cunninghamiana tree and bioassays with C. cunninghamiana seedlings as capture plants. Nodulation capacities were determined from soils incubated in sterile jars at 21 °C for 1, 7, and 28 days, after receiving all combinations of the following treatments: ± steam pasteurization, ± inoculation with Frankia isolate CjI82001, and ± amendment with different concentrations of Casuarina cladode extracts. Soil respiration within sealed containers was determined periodically during the incubation period as a measure of overall microbial activity. Soil respiration, and thus overall microbial activity, was positively correlated with increasing concentrations of Casuarina cladode extracts. The nodulation capacity of soils inoculated with Frankia strain Cj82001 decreased over time, while those of unpasteurized soils without inoculation either increased or remained unaffected. The mean nodulation capacity of unpasteurized soil inoculated with Frankia CjI82001 was two to three times greater than the sum of values for unpasteurized and inoculated pasteurized soils. Our results suggest a positive synergism between soil biota as a whole and Frankia inoculum with respect to host infection.  相似文献   

16.
This study examines the speed of nodulation of 20 strains of Rhizobium leguminosarum bv phaseoli, and relates this trait to the competitive performance of these strains with Phaseolus vulgaris L. At 25/20°C day/night temperature, and with 107 cells applied per growth pouch, there was a strong positive correlation between the speed of nodulation and the competitiveness of strains with the nod + fix reference strain UMR 1116. Strains UMR 1084, 1125, 1165, 1173 and 1384 combined good competitive performance with extensive nodulation in the uppermost root regions. When inoculant levels in the RTM studies were reduced to 103 cells per pouch no correlation between the apparent competitiveness of strains and their speed in nodulation was evident, presumably because cells had to undergo multiplication before infection. Nodulation was also delayed when growth temperatures were raised to 31/26°C, but a correlation was still evident between competitive performance and nodulation in the region 0.1 to 5.0 mm below the RTM at the time of inoculation. From these results speed of nodulation can be used to estimate the competitive potential of Rhizobium strains, but only under carefully regulated conditions. The effects of inoculation level and temperature on the relationship between speed of nodulation and strain competitiveness could explain the inconsistent results obtained in earlier studies on this topic.Journal paper No. 16962, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

17.
Soil bacteria (rhizobia) of the genus Bradyrhizobium form symbiotic relationships with peanut root cells and fix atmospheric nitrogen by converting it to nitrogenous compounds. Inoculation of peanut with rhizobia can enhance the plant’s ability to fix nitrogen from the air and thereby reduce the requirement for nitrogen fertiliser. We evaluated three Bradyrhizobium sp. strains for effect on root nodulation and on pod yield of peanut in Argentina soils, using laboratory and field experiments. Of these, strain C‐145 was the most effective in laboratory studies. In‐furrow inoculation with this strain produced increased nodule number, relative to seed inoculation. However, pod yield was not increased significantly by either type of inoculation. In view of the inconsistent response of peanut to inoculation, we examined the effect of indigenous strains of bradyrhizobia. The high degree of nodulation and nitrogen fixation produced by indigenous rhizobia were sufficient for maximal yield under the field and inoculation conditions used in this study. The data are important for future investigation of alternative inoculant strains and conditions for improving peanut production.  相似文献   

18.
The effect of calcium on the nodulation of lucerne was studied using EGTA, a specific calcium-chelator. First, the effects of the chelator were tested on hydroponically grown plants at pH 7.0. Optimal numbers of nodules were obtained in nutrient solution containing 0.2 mM CaCl2. When 0.4 mM EGTA was given additionally, nodulation was completely inhibited. Nodulation was restored specifically with CaCl2, but not with MgCl2. For studies in an acid soil (pH-H2O 5.2), lucerne seedlings were grown in rhizotrons. 67% of the seedlings became nodulated when the soil around the seed was neutralized locally with 1.0 μmol of K2CO3 in drops of 12 μL volume. When native calcium was removed with 2 μmol of EGTA, nodulation was reduced to 12%. However, addition of EGTA to soil resulted in a drop of pH from 6.1 to 5.2. A phosphate buffer could also not keep soil-pH sufficiently stable. Such pH-decreases could be avoided by placing agar blocks containing 6 μmol of EGTA for three hours on freshly developed roots. This treatment reduced nodulation from 87% to 32%, with soil-pH lowering only from 6.2 to 6.0. Nodulation could be restored by adding 2 μmol of CaCl2. The depletion of soil-calcium could depress nodule formation only during the first day after inoculation.  相似文献   

19.
Summary From 1979 to 1984 more than seven million seedlings of actinorhizal plants were successfully inoculated on an industrial scale withFrankia inoculants. Nodulated seedlings were produced in greenhouses to be used for land reclamation in northern Québec by the Societe d'Energie de la Baie James (SEBJ) and also by the City of Montréal for a revegetation program. Crushed-nodule homogenates andFrankia pure culture formulations were compared for large scale inoculation of green alder. Pure culture inoculant was found to be superior than crushed-nodule homogenates yielding reproducible nodulation of seedlings. Two inoculation methods of theFrankia pure culture inocula were compared: soil injection and spraying with greenhouse watering devices. Both methods resulted in efficient nodulation ofAlnus crispa, A. glutinosa, A. rugosa, Elaeagnus angustifolia, E. commutata, Hippophaë rhamnoides, Myrica gale andShepherdia argentea.  相似文献   

20.
One of the most cultivated and consumed vegetables in Brazil is the common bean, Phaseolus vulgaris L. The symbiosis of this plant species with nitrogen-fixing bacteria that are adapted to the stresses commonly found in tropical soils can increase production. The aim of this study was to evaluate the symbiotic effectiveness of bacterial strains from soils under different land uses in the Amazon region. Further, rhizobia tolerance to acidity and aluminium and the involvement of some possible physiological mechanisms of such tolerance were also investigated. In assessing the efficiency of biological nitrogen fixation, inoculation with strains UFLA04-195, UFLA04-173 and UFLA04-202, belonging to the genus Rhizobium, resulted in greater plant growth, higher shoot nitrogen content and good nodulation compared to the inoculation with the strain CIAT 899 (R. tropici), and to the mineral nitrogen control or Burkholderia fungorum strains that nodulated or not bean plants. These efficient strains grew better at pH 5.0 than at pH 6.0 or pH 6.9; they also tolerated up to 1 mmol l−1 of Al3+ and showed an increased production of exopolysaccharides where the growing rates were less (pH 6.0 and pH 6.9). With respect to aluminium, the highest production of EPS produced greater tolerance to this element. Taken together, these results indicate that the strains evaluated in this study were tolerant to acidity and aluminium; they appeared to have developed resistance mechanisms such as EPS production and a resistant cell outer membrane (indicated by resistance to polymyxin and methyl violet). As these strains also gave increased yields of the host species, further studies on whether to recommend these strains as inoculants are already underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号