首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chang JY 《Biochemistry》2004,43(15):4522-4529
The pathways of oxidative folding of disulfide proteins exhibit a high degree of diversity, which is illustrated by the varied extent of (a) the heterogeneity of folding intermediates, (b) the predominance of intermediates containing native disulfide bonds, and (c) the level of accumulation of fully oxidized scrambled isomers as intermediates. BPTI and hirudin exemplify two extreme cases of such divergent folding pathways. We previously proposed that the underlying cause of this diversity is associated with the degree of stability of protein subdomains. Here we present compelling evidence that substantiates this hypothesis by studying the folding pathway of alphaLA-IIA. alphaLA-IIA is a partially folded intermediate of alpha-lactalbumin (alphaLA). It comprises a structured beta-sheet (calcium-binding) domain linked by two native disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) and a disordered alpha-helical domain with four free cysteines (Cys(6), Cys(28), Cys(111), and Cys(120)). Purified alphaLA-IIA was allowed to refold without and with stabilization of its structured beta-sheet domain by calcium. In the absence of calcium, the folding pathway of alphaLA-IIA resembles that of hirudin, displaying a highly heterogeneous population of folding intermediates, including fully oxidized scrambled species. Upon stabilization of its beta-sheet domain by bound calcium, oxidative folding of alphaLA-IIA undergoes a pathway conspicuously similar to that of BPTI, exhibiting limited species of folding intermediates containing mostly native disulfide bonds.  相似文献   

2.
Pathways of oxidative folding of disulfide proteins display a high degree of diversity and vary among two extreme models. The BPTI model is defined by limited species of folding intermediates adopting mainly native disulfide bonds. The hirudin model is characterized by highly heterogeneous folding intermediates containing mostly non-native disulfide bonds. αLA-IIIA is a 3-disulfide variant of α-lactalbumin (αLA) with a 3-D conformation essentially identical to that of intact αLA. αLA-IIIA contains 3 native disulfide bonds of αLA, two of them are located at the calcium binding β-subdomain (Cys61–Cys77 and Cys73–Cys91) and the third bridge is located within the α-helical domain of the molecule (Cys28–Cys111). We investigate here the pathway of oxidative folding of fully reduced αLA-IIIA with and without stabilization of its β-subdomain by calcium binding. In the absence of calcium, the folding pathway of αLA-IIIA was shown to resemble that of hirudin model. Upon stabilization of β-sheet domain by calcium binding, the folding pathway of αLA-IIIA exhibits a striking similarity to that of BPTI model. Three predominant folding intermediates of αLA-IIIA containing exclusively native disulfide bonds were isolated and structurally characterized. Our results further demonstrate that stabilization of subdomains in a protein may dictate its folding pathway and represent a major cause for the existing diversity in the folding pathways of the disulfide-containing proteins.  相似文献   

3.
The folding of lysozyme and of alpha-lactalbumin exhibits vastly different kinetics and pathways. Existing evidence indicates that folding intermediates of alphaLA form a well-populated equilibrium molten globule state that is absent in the case of hen lysozyme. We demonstrate here such divergent folding mechanisms of lysozyme and alphaLA using the technique of disulfide scrambling. Two extensively unfolded homologous isomers (beads-form) of lysozyme (Cys6-Cys30, Cys64-Cys76, Cys80-Cys94, Cys115-Cys127) and alphaLA (Cys6-Cys28, Cys61-Cys73, Cys77-Cys91, Cys111-Cys120) were allowed to refold in parallel to form the native protein. Folding kinetics was measured by the recovery of the native structure. Folding intermediates, which illustrate the folding pathway, were trapped by quenching disulfide shuffling and were analyzed by reversed-phase high-pressure liquid chromatography. The results revealed that under identical folding conditions, the folding rate of lysozyme is about 30-fold faster than that of alphaLA. Folding intermediates of lysozyme are far less heterogeneous and sparsely populated than those of alphaLA. Numerous predominant on-pathway and off-pathway intermediates observed along the folding pathway of alphaLA are conspicuously absent in the case of lysozyme. The difference is most striking under fast folding conditions performed in the presence of protein disulfide isomerase. Under these conditions, folding of lysozyme undergoes a near two-state mechanism without accumulation of stable folding intermediates.  相似文献   

4.
Lewney S  Smith LJ 《Proteins》2012,80(3):913-919
Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species.  相似文献   

5.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

6.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

7.
Zhang YH  Yan X  Maier CS  Schimerlik MI  Deinzer ML 《Biochemistry》2002,41(52):15495-15504
In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence. The folding intermediates revealed that rhm-CSFbeta folds systematically, forming disulfide bonds via multiple pathways. Mass spectrometric evidence indicates that native as well as non-native intrasubunit disulfide bonds form in monomeric intermediates. Initial dimerization is assumed to involve formation of disulfide bonds, Cys 157/159-Cys' 157/159. Among six intrasubunit disulfide bonds, Cys 48-Cys 139 and Cys' 48-Cys' 139 are assumed to be the last to form, while Cys 31-Cys' 31 is the last intersubunit disulfide bond that forms. Conformational properties of the folding intermediates were probed by H/D exchange pulsed labeling, which showed the coexistence of noncompact dimeric and monomeric species at early stages of folding. As renaturation progresses, the noncompact dimer undergoes significant structural rearrangement, forming a native-like dimer while the monomer maintains a noncompact conformation.  相似文献   

8.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues and four disulfide bonds. Illumination with near-UV light results in the cleavage of disulfide bridges and in the formation of free thiols. To obtain information about the reaction products, the illuminated protein was carbamidomethylated and digested with trypsin and the peptides were analyzed by mass spectrometry. Peptides containing Cys120Cam, Cys61Cam, or Cys91Cam were detected, as well as two peptides containing a new Cys-Lys cross-link. In one, Cys6 was cross-linked to Lys122, while the cross-link in the second was either a Cys91-Lys79 or Cys73-Lys93 cross-link; however, the exact linkage could not be defined. The results demonstrate photolytic cleavage of the Cys6-Cys120, Cys61-Cys77, and Cys73-Cys91 disulfide bonds. While photolysis of Cys6-Cys120 and Cys73-Cys91 disulfide bonds in GLA has been reported, cleavage of the Cys61-Cys77 disulfide bonds has not been previously detected. To examine the contribution of the individual Trp residues, we constructed the GLA mutants, W26F, W60F, W104F, and W118F, by replacing single Trp residues with phenylalanine (Phe). The substitution of each Trp residue led to less thiol production compared to that for wild-type GLA, showing that each Trp residue in GLA contributed to the photolytic cleavage of disulfide bridges. The specificity was expressed by the nature of the reaction products. No cleavage of the Cys6-Cys120 disulfide bridge was detected when the W26F mutant was illuminated, and no cleavage of the Cys73-Cys91 disulfide bridge was seen following illumination of W26F or W104F. In contrast, Cys61Cam, resulting from the cleavage of the Cys61-Cys77 disulfide bridge, was found following illumination of any of the mutants.  相似文献   

9.
The folding pathway of human epidermal growth factor (EGF) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. Oxidative folding of the fully reduced EGF proceeds through 1-disulfide intermediates and accumulates rapidly as a single stable 2-disulfide intermediate (designated as EGF-II), which represents up to more than 85% of the total protein along the folding pathway. Among the five 1-disulfide intermediates that have been structurally characterized, only one is native, and nearly all of them are bridges by neighboring cysteines. Extensive accumulation of EGF-II indicates that it accounts for the major kinetic trap of EGF folding. EGF-II contains two of the three native disulfide bonds of EGF, Cys(14)-Cys(31) and Cys(33)-Cys(42). However, formation of the third native disulfide (Cys(6)-Cys(20)) for EGF-II is slow and does not occur directly. Kinetic analysis reveals that an important route for EGF-II to reach the native structure is via rearrangement pathway through 3-disulfide scrambled isomers. The pathway of EGF-II to attain the native structure differs from that of three major 2-disulfide intermediates of bovine pancreatic trypsin inhibitor (BPTI). The dissimilarities of folding mechanism(s) between EGF, BPTI, and hirudin are discussed in this paper.  相似文献   

10.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

11.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   

12.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

13.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

14.
Mutant human lysozymes (HLZ) lacking two disulfide bonds were constructed to study the importance of each disulfide bond on oxidative refolding. To avoid destabilization, a calcium-binding site was introduced. Five of the six species of two-disulfide mutants could be obtained with enzymatic activity. Based on the information obtained from refolding and unfolding experiments, the order of importance in oxidative refolding was found to be as follows: SS2(Cys30-Cys116) > SS1(Cys6-Cys128) SS3(Cys65-Cys81) > SS4(Cys77-Cys95). Without SS2, these mutants refolded with low efficiency or did not refold at all. The bond SS2 is located in the interface of B-and D-helices, and a small hydrophobic cluster is formed near SS2. This cluster may play an important role in the folding process and stabilization, and SS2 may act as a stabilizer through its polypeptide linkage. The bond SS2 is the most important disulfide bond for oxidative folding of lysozymes.  相似文献   

15.
The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (designated as III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that interconvert, reaching an equilibrium prior to the formation of the scrambled isomers. Given that these intermediates act as kinetic traps during the oxidative folding, their accumulation is prevented when they are destabilized, thus leading to a significant acceleration of the folding kinetics. III-A and III-B forms appear to have both native disulfides bonds and free thiols similarly protected from the solvent; major structural rearrangements through the formation of scrambled isomers are required to render native LCI. The reductive unfolding pathway of LCI undergoes an apparent all-or-none mechanism, although low amounts of intermediates III-A and III-B can be detected, suggesting differences in protection against reduction among the disulfide bonds. The characterization of III-A and III-B forms shows that the former intermediate structurally and functionally resembles native LCI, whereas the III-B form bears more resemblance to scrambled isomers.  相似文献   

16.
The ligand binding module five (LA5) of the low density lipoprotein receptor is a small, single-domain protein of 40 residues and three disulfide bonds with a calcium binding motif that is essential for its structure and function. Several mutations in LA5 have been reported to cause familial hypercholesterolemia by impairing a proper folding of the module. The current study reports the oxidative folding and reductive unfolding pathways of wild type and mutant LA5 modules through kinetic and structural analysis of the trapped intermediates. Wild type LA5 folding involves an initial phase of nonspecific packing where the sequential oxidation of its cysteines gives rise to complex equilibrated populations of intermediates. In the presence of calcium, the attainment of a coordination-competent conformation becomes the rate-limiting step of folding while binding of the ion funnels both thermodynamically and kinetically the folding reaction toward the native state. In the absence of calcium, a scrambled isomer (termed Xa) constitutes the global free energy minimum of the folding process. Xa and the native form are stable, inter-convertible species whose relative populations at equilibrium appear displaced in disease-linked mutants toward the scrambled form. Because stable scrambled isomers such as Xa avoid the exposition of reactive cysteines in misfolded modules, they might constitute a strategy to prevent wrong interactions with other domains during folding of the receptor. Comparison of the folding pathways of wild type and mutant LA5 provides the molecular basis to understand how LA modules fold into a functional conformation or upon mutation misfold and lead to disease.  相似文献   

17.
alpha-Conotoxin ImI is a 12-amino acid peptide, found in the venom of the marine snail Conus imperialis. This conotoxin is a selective antagonist of alpha7 nicotinic acetylcholine receptors. To produce biologically active alpha-ImI, disulfide bonds must be formed between Cys2-Cys8 and Cys3-Cys12. Oxidative folding of bicyclic conotoxins, such as alpha-ImI, has been traditionally achieved using two-step oxidation protocols with orthogonal protection on two native pairs of cysteines. In this work, two alternative oxidation protocols were explored: (1) the recently described one-pot oxidation of t-butyl/4-methylbenzyl protected Cys pairs and (2) direct oxidative folding. In contrast to the first method, the latter one resulted in high yields of correctly folded alpha-ImI. The addition of organic cosolvents, such as methanol, ethanol or isopropanol into the folding mixture significantly increased the accumulation of the native peptide. This effect was also observed for another conotoxin, alpha-PnIA. It is suggested that cosolvent-assisted direct oxidation might be of general use for other bicyclic alpha-conotoxins, but efficiency should be assessed on a case-by-case basis.  相似文献   

18.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

19.
Zhang Z  Boyle PC  Lu BY  Chang JY  Wriggers W 《Biochemistry》2006,45(51):15269-15278
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extra-cellular domains. Human EGF is a small, single-chain protein comprising three distinct loops (A, B, and C), which are connected by three disulfide bridges (Cys6-Cys20, Cys14-Cys31, and Cys33-Cys42). These disulfide bridges are essential for structural stability and biological activity. EGF was extensively studied by disulfide scrambling, an experimental technique for the conformational entrapment of intermediate states, which allows us to study the folding pathway of proteins containing disulfide bonds. The experimental results showed that there is a major 2-disulfide intermediate (denoted EGF-II) and that the native disulfide bonding pattern is less prevalent in one of the mutants. In this article, we investigated for the first time the solution conformations of wild-type EGF, EGF-II, and the mutant S9C through extensive molecular dynamics (MD) simulations in water using both the standard MD technique and a recently developed amplified-collective-motion (ACM) sampling method. Compared to standard MD simulations, we achieved a much more enhanced sampling by the ACM simulations, and the structures were sufficiently relaxed to estimate configurational entropies. The simulation results suggest a predominantly entropic folding pathway governed by the disorder of three functional loop regions. Although EGF-II exhibits two native disulfide bonds (Cys14-Cys31 and Cys33- Cys42), its large configurational entropy inhibits a direct transition to the native structure in the folding process. When Ser9 is mutated into Cys, a non-native disulfide bridge Cys9- Cys20 is slightly more favorable than the native Cys6-Cys20 because a less constrained N-terminus affords larger entropy. Isomers that are functionally less active also exhibit a more localized dynamics of the functional loop regions, which may suggest a possible mechanism for the modulation of EGF activity.  相似文献   

20.
Salamanca S  Li L  Vendrell J  Aviles FX  Chang JY 《Biochemistry》2003,42(22):6754-6761
The leech carboxypeptidase inhibitor (LCI) is a 66-amino acid protein, containing four disulfides that stabilize its structure. This polypeptide represents an excellent model for the study and understanding of the diversity of folding pathways in small, cysteine-rich proteins. The pathway of oxidative folding of LCI has been elucidated in this work, using structural and kinetic analysis of the folding intermediates trapped by acid quenching. Reduced and denatured LCI refolds through a rapid, sequential flow of one- and two-disulfide intermediates and reaches a rate-limiting step in which a mixture of three major three-disulfide species and a heterogeneous population of non-native four-disulfide (scrambled) isomers coexist. The three three-disulfide intermediates have been identified as major kinetic traps along the folding pathway of LCI, and their disulfide structures have been elucidated in this work. Two of them contain only native disulfide pairings, and one contains one native and two non-native disulfide bonds. The coexistence of three-disulfide kinetic traps adopting native disulfide bonds together with a significant proportion of fully oxidized scrambled isomers shows that the folding pathway of LCI features properties exhibited by both the bovine pancreatic trypsin inhibitor and hirudin, two diverse models with extreme folding characteristics. The results further demonstrate the large diversity of disulfide folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号