首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Phototropin 1 (phot1) and phot2, which are blue light receptor kinases, function in blue light-induced hypocotyl phototropism, chloroplast relocation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Previous studies have shown that the proteins RPT2 (for ROOT PHOTOTROPISM2) and NPH3 (for NONPHOTOTROPIC HYPOCOTYL3) transduce signals downstream of phototropins to induce the phototropic response. However, the involvement of RPT2 and NPH3 in stomatal opening and in chloroplast relocation mediated by phot1 and phot2 was unknown. Genetic analysis of the rpt2 mutant and of a series of double mutants indicates that RPT2 is involved in the phot1-induced phototropic response and stomatal opening but not in chloroplast relocation or phot2-induced movements. Biochemical analyses indicate that RPT2 is purified in the crude microsomal fraction, as well as phot1 and NPH3, and that RPT2 makes a complex with phot1 in vivo. On the other hand, NPH3 is not necessary for stomatal opening or chloroplast relocation. Thus, these results suggest that phot1 and phot2 choose different signal transducers to induce three responses: phototropic response of hypocotyl, stomatal opening, and chloroplast relocation.  相似文献   

2.
Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.  相似文献   

3.
Phototropins are blue-light photoreceptor molecules mediating the capacity for phototropism or bending toward or away from directional light. Like the red-light sensing phytochromes that control shade avoidance, phototropins modulate developmental plasticity in plant architecture. Yet, unlike phytochromes, the adaptive significance of phototropins has been largely a topic of conjecture. In Arabidopsis thaliana, phototropism of seedling and plant stems is under the control of two paralogous genes, PHOT1 and PHOT2, that encode different phototropins with partially redundant light response qualities. The PHOT1 gene product interacts with the NPH3 gene product to cause phototropic bending over a broad range of light intensity, from very weak light in the soil to stronger light in the aerial environment. The PHOT2 gene product modulates shoot bending in response to light of higher intensity only. We compared the fitness of wild-type, phot1, phot2, and nph3 genotypes over a range of light conditions in the field. Seeds were sown in the field on the soil surface and left bare or covered with either gravel or bark mulch chips. Plantings were made under full sun and dense canopy cover. Rates of seedling emergence, survival to flowering, and total seed set were measured. All mutant genotypes had significantly reduced lifetime fitness compared to wild-type. Consistent with their different fluence rate sensitivities, phot1 and phot2 signaling pathways affected fitness at discrete life-cycle stages. Fitness costs of phot1 and nph3 were expressed mainly during seedling emergence from the soil whereas that of phot2 was expressed solely after emergence. Surprisingly, the only significant genotype-by-environment interaction for fitness occurred during emergence: genotypes blind to dim blue light (phot1 and nph3) had poor emergence in the open, but not in the shade. Possibly, the loss of negative phototropism in seedling roots of mutant genotypes reduced establishment success in open (dry soil) conditions. Results show that phototropin-modulated pathways are adaptive and that their evolution has involved functional specialization. However, mechanism(s) of selection on these pathways remain a mystery.  相似文献   

4.
The phototropic response in Arabidopsis thaliana is initiated by the blue-light photoreceptors, phototropin (phot)1 and phot2. A recent study has shown that one of the phototropic signal transducers, NPH3, is phosphorylated under dark conditions and dephosphorylated by blue-light irradiation. To further understand the function of phosphorylation and dephosphorylation of NPH3 during this phototropic response, we have mapped the phosphorylation sites of NPH3 in our current study. The NPH3 protein has at least three phosphorylation sites at serine residues, Ser212, Ser222, and Ser236, and these sites are dephosphorylated by blue-light irradiation. By immunoblotting analysis, these phosphorylation sites in phot1 mutants are not dephosphorylated following blue-light irradiation at both low and high fluence rates, even though such irradiations induce the phot2-dependent phototropic response in phot1. These results suggest that the dephosphorylated NPH3 is involved in the phot1-dependent phototropic response and is not essential for the phot2-dependent phototropic response. We generated two types of transgenic nph3 plants expressing a NPH3S212A/S222A/S232A/S236A protein and a NPH3Δ212–238 protein in which the phosphorylation region is deleted, and assessed the phototropic phenotype of these. Based upon our present findings, we discuss the role of dephosphorylated and phosphorylated NPH3 in mediating the phototropic response.  相似文献   

5.
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.  相似文献   

6.
Photosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light (BL) photoreceptor phototropin 1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here, we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We generated unphosphorable and phosphomimetic NPH3 proteins on seven phosphorylation sites in the etiolated seedlings of Arabidopsis. Unphosphorable NPH3 showed a shortening of its retention time in the cytosol and caused an inability to adapt to very low fluence rates of BL (∼10−5 µmol m−2 s−1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened retention time in the cytosol and could not enable the adaptation to BL at fluence rates of 10−3 µmol m−2 s−1 or more. Our results indicate that the activation level of phot1 and the corresponding phosphorylation level of NPH3 determine the dissociation rate and the reassociation rate of NPH3 on the plasma membrane, respectively. These mechanisms may moderately maintain the active state of phot1 signaling across a broad range of BL intensities and contribute to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.

The phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 pr  相似文献   

7.
Both phototropins(phot1 and phot2) and cryptochromes(cry1 and cry2) were proven as the Arabidopsis thaliana blue light receptors. Phototropins predominately function in photomovement, and cryptochromes play a role in photomorphogenesis. Although cryptochromes have been proposed to serve as positive modulators of phototropic responses, the underlying mechanism remains unknown. Here, we report that depleting sucrose from the medium or adding gibberellic acids(GAs) can partially restore the defects in phototropic curvature of the phot1 phot2 double mutants under high-intensity blue light; this restoration does not occur in phot1 phot2 cry1 cry2 quadruple mutants and nph3(nonphototropic hypocotyl 3) mutants which were impaired phototropic response in sucrose-containing medium. These results indicate that GAs and sucrose antagonistically regulate hypocotyl phototropism in a cryptochromes dependent manner, but it showed a crosstalk with phototropin signaling on NPH3.Furthermore, cryptochromes activation by blue light inhibit GAs synthesis, thus stabilizing DELLAs to block hypocotyl growth, which result in the higher GAs content in the shade side than the lit side of hypocotyl to support the asymmetric growth of hypocotyl. Through modulation of the abundance of DELLAs by sucrose depletion or added GAs, it revealed that cryptochromes have a function in mediating phototropic curvature.  相似文献   

8.
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1‐ and phot2‐mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi‐reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.  相似文献   

9.
Four genetic loci were recently identified by mutations that affect phototropism in Arabidopsis thaliana (L.) Heyhn. seedlings. It was hypothesized that one of these loci, NPH1, encodes the apoprotein for a phototropic photoreceptor. All of the alleles at the other three mutant loci (nph2, nph3, and nph4) contained wild-type levels of the putative NPH1 protein and exhibited normal blue-light-dependent phosphorylation of the NPH1 protein. This indicated that the NPH2, NPH3, and NPH4 proteins likely function downstream of NPH1 photoactivation. We show here that, although the nph2, nph3, and nph4 mutants are all altered with respect to their phototropic responses, only the nph4 mutants are also altered in their gravitropic responsiveness. Thus, NPH2 and NPH3 appear to act as signal carriers in a phototropism-specific pathway, whereas NPH4 is required for both phototropism and gravitropism and thus may function directly in the differential growth response. Despite their altered phototropic responses in blue and green light as etiolated seedlings, the nph2 and nph4 mutants exhibited less dramatic mutant phenotypes as de-etiolated seedlings and when etiolated seedlings were irradiated with unilateral ultraviolet-A (UV-A) light. Examination of the phototropic responses of a mutant deficient in biologically active phytochromes, hy1-100, indicated that phytochrome transformation by UV-A light mediates an increase in phototropic responsiveness, accounting for the greater phototropic curvature of the nph2 and nph4 mutants to UV-A light than to blue light.  相似文献   

10.
Two redundant blue‐light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low‐ and high‐intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2‐specific functions by screening for HBL‐insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON‐PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3‐GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation‐mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2‐2 mutants. Furthermore, HBL‐induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2‐2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL.  相似文献   

11.
12.
赵翔  赵青平  杨煦  慕世超  张骁 《植物学报》2015,50(1):122-132
蓝光受体向光素(PHOT1/PHOT2)调节蓝光诱导的植物运动反应, 包括植物向光性、叶绿体运动、气孔运动和叶片伸展等。其中, 向光素介导的植物向光性能够促使植物弯向光源, 确保其以最佳取向捕获光源, 优化光合作用。光敏色素和隐花色素作为光受体也参与植物的向光性调节。该文综述了向光素介导的拟南芥(Arabidopsis thaliana)下胚轴向光弯曲信号转导及其与光敏色素、隐花色素协同作用的分子机制, 以期为改造植物光捕获能力及提高光利用效率提供理论基础。  相似文献   

13.
Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions.  相似文献   

14.
15.
Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca2+]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca2+ increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca2+]cyt mainly by an inner store-dependent Ca2+-release pathway, not by activating plasma membrane Ca2+ channels. Further analysis showed that the increase in [Ca2+]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca2+]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca2+ signaling-related HBL modulates hypocotyl phototropic responses.Blue light (BL) is a key factor controlling plant growth and morphogenesis. Recent genetics investigations using Arabidopsis (Arabidopsis thaliana) have revealed that the BL receptors phototropin1 (phot1) and phot2 mediate BL-induced plant movements such as phototropism, chloroplast relocation, stomatal opening, leaf flattening, and leaf positioning responses (Inoue et al., 2010). Most of these responses are mediated redundantly by both phot1 and phot2 (Kinoshita et al., 2001; Sakamoto and Briggs, 2002), but some responses are mediated by either phot1 or phot2 (Sakai et al., 2001; Suetsugu et al., 2005). In addition, several lines of evidence have indicated that phot2 might negatively regulate the phot1-mediated response (de Carbonnel et al., 2010) and vice versa (Harada et al., 2003, 2013).One of the numerous physiological processes controlled by BL is phototropism. Phototropism enables plants to bend toward incident light by perceiving the direction, wavelength, and intensity of incident light so that they are able to obtain optimum light. Genetic evidence has shown that both phot1 and phot2 redundantly function to regulate hypocotyl phototropism in a fluence-dependent manner (Sakai et al., 2001). Phot1 functions at both low (0.01–1 μmol m−2 s−1) and high (greater than 1 μmol m−2 s−1) fluence rates to mediate phototropic responses, but phot2 functions only at high fluence rates (Inada et al., 2004). The functional specification of phot1 and phot2 could be attributed to the differences in signal intermediates between phot1 and phot2 signaling pathways.Genetic analysis has illustrated that phot1 mediates hypocotyl phototropism via its downstream signal transducers NONPHOTOTROPIC HYPOCOTYL3 (NPH3; Motchoulski and Liscum, 1999), ROOT PHOTOTROPISM2 (RPT2; Sakai et al., 2000), and NONPHOTOTROPIC HYPOCOTYL4/AUXIN RESPONSE FACTOR7 (NPH4/ARF7; Harper et al., 2000), resulting in the asymmetric distribution of auxin and the induction of a phototropic response in higher plants. Recently, studies have demonstrated that PHYTOCHROME KINASE SUBSTRATE (PKS) proteins are required for hypocotyl phototropism and that PKS1 binds PHOT1 and NPH3 in vivo (Lariguet et al., 2006). In addition, ATP-BINDING CASSETTE B19 (ABCB19), a newly identified auxin transporter, has been reported to interact with phot1 to regulate the BL-dependent phototropism (Christie et al., 2011). However, little is known about phot2-mediated phototropism for functional specialization, especially under high fluence rates of blue light (HBL), although several lines of evidence have shown that phot2- and phot1-mediated signaling pathways share some intermediates in BL responses (Kimura and Kagawa, 2006; Christie, 2007). Previous researches have suggested that phot1 acts not only positively in the presence of RPT2 but also negatively in its absence during the phototropic response of hypocotyls at high fluence rates, suggesting that RPT2 modulates the function of phot1. However, RPT2 does not act in the phot2-mediated pathway (Inada et al., 2004). More recently, RCN1-1, the A1 subunit of Ser/Thr PROTEIN PHOSPHATASE2A (PP2A), has been identified to interact with phot2. While reduced PP2A activity enhances the activity of phot2, it does not enhance either phot1 dephosphorylation or the activity of phot1 in mediating phototropism (Tseng and Briggs, 2010).Besides these signal intermediates noted above, phototropins may also confer their effects through the change of ion homeostasis. Ca2+ is a case in point. Recent reports have demonstrated that phototropins mediate the mobilization of Ca2+ in response to BL and that phot1 and phot2 mediate Ca2+ increases with distinctive mechanism in leaf cells according to the changes of ambient light intensity (Harada and Shimazaki, 2007). Under low fluence rates of BL, phot1 solely mediated Ca2+ influx through the channels in the plasma membrane. Under HBL, the increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is primarily attributed to phot2-dependent Ca2+ release from the internal calcium stores as well as the plasma membrane Ca2+ channels. Interestingly, the inhibitory effects of phospholipase C (PLC) inhibitors on the BL-induced responses in the wild type are larger than those in the phot1 single mutant, which indicates that there are some functional interactions between phot1 and phot2 to induce the elevation of cytosolic Ca2+ (Harada et al., 2003).However, until now, the function of Ca2+ in the phototropin-mediated phototropism signaling process has remained largely unknown. Pharmacological experiments indicate that changes in [Ca2+]cyt are required for the phot1-mediated inhibition of hypocotyl growth but not for phot1-mediated phototropism (Folta et al., 2003). Otherwise, electrophysiological studies indicate that phototropic bending involves changes in ion fluxes, including calcium (Babourina et al., 2004). Such divergent responses show that the link between phototropins and calcium has not been firmly established in the case of hypocotyl phototropism. In phototropism, the phot1-dependent relocalization of the auxin efflux carrier PIN-FORMED1 (PIN1) is required for auxin redistribution (Blakeslee et al., 2004), and the PINOID kinase influences the relocalization of PIN1 (Friml et al., 2004). Given that both the calmodulin-related protein TCH3 and the calcium-binding protein AtPBP1 can bind to the PINOID kinase (Benjamins et al., 2003), it would appear that the cross talk among phototropins, auxin, and calcium is an important event for phototropism.Here, we show that HBL induces increases in [Ca2+]cyt, which are mostly attributed to the function of phot2, and that the increases in [Ca2+]cyt are required for HBL-induced phototropism in Arabidopsis hypocotyls. We also demonstrate that PKS1 may integrate phototropins with auxin transport in phot2-dependent Ca2+ signaling, and we discuss the possible molecular link between phototropins and other potential signal elements in HBL-induced phototropism.  相似文献   

16.
Haga K  Takano M  Neumann R  Iino M 《The Plant cell》2005,17(1):103-115
We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.  相似文献   

17.
In general, phototropic responses in land plants are induced by blue light and mediated by blue light receptor phototropins. In many cryptogam plants including the fern Adiantum capillus-veneris, however, red as well as blue light effectively induces a positive phototropic response in protonemal cells. In A. capillus-veneris, the red light effect on the tropistic response is mediated by phytochrome 3 (phy3), a chimeric photoreceptor of phytochrome and full-length phototropin. Here, we report red and blue light-induced negative phototropism in A. capillus-veneris rhizoid cells. Mutants deficient for phy3 lacked red light-induced negative phototropism, indicating that under red light, phy3 mediates negative phototropism in rhizoid cells, contrasting with its role in regulating positive phototropism in protonemal cells. Mutants for phy3 were also partially deficient in rhizoid blue light-induced negative phototropism, suggesting that phy3, in conjunction with phototropins, redundantly mediates the blue light response.  相似文献   

18.
Phototropins (phot1 and phot2) are suggested to be multifunctional blue-light (BL) receptors mediating phototropism, chloroplast movement, stomatal opening, and leaf expansion. The Arabidpsis phot1 phot2 double mutant lacks all of these responses. To confirm the requirement of phototropins in BL responses, the Arabidopsis phot1 phot2 double mutant was transformed with PHOT1 cDNA and the phenotypic restoration was analysed in the transformants. It was found that all BL responses were restored, although differentially, by the transformation of the Arabidopsis phot1 phot2 double mutant with PHOT1 cDNA. The results showed that phot1 was an essential component for all these BL responses in planta, and that the cellular level of phot1 might determine the individual BL responses.  相似文献   

19.
20.
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号