共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in extracts and microtubules from an enriched gray matter region of the brain. On a per mole basis, twice-cycled microtubules from white matter contained three times more tau than did twice-cycled microtubules from gray matter. Immunohistochemical studies that compared the localization of tau with that of MAP2 and tubulin demonstrated that tau was restricted to axons, extending the results of the biochemical studies. Tau localization was not observed in glia, which indicated that, at least in brain, tau is neuron specific. These observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons. Furthermore, the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker. 相似文献
3.
Localization of subspecies of protein kinase C in the mammalian central nervous system 总被引:6,自引:0,他引:6
Activation of protein kinase C (PKC) is regulated by dual second messengers; diacylglycerol (DG) produced by receptor mediated hydrolysis of phosphatidylinositol and Ca2+ which is released by inositol 1,4,5-triphosphate (IP3) from intracellular stores in the endoplasmic reticulum. In the mammalian central nervous system, available evidence suggests that PKC plays a prominent role in the processing of neuronal signals and in the short-term or long-term modulation of synaptic transmission. This enzyme is a member of a family consisting of at least eight subspecies, , βI, βII, γ, δ, , ζ and η. The homologous structure of each subspecies makes difficult resolution of the enzymological properties of the enzyme. The distinct functional roles of PKC subspecies in mammalian tissues have been elucidated by defining the localization of each subspecies. We identified -, βI-, βII- and γ-PKC subspecies in the rat brain by in situ hybridization and by light and electron microscopic immunohistochemistry, using antibodies specific for each subspecies. Most immunoreactions of the , βI, βII and γ subspecies were evident in neurons and there were few, if any, in glial cells. In this article, we summarize known cellular and subcellular localizations of PKC subspecies in mammalian CNS and some aspects of current studies in neuronal functions regulated by this enzyme are discussed. 相似文献
4.
Homeostatic plasticity in the developing nervous system 总被引:1,自引:0,他引:1
5.
A novel POU homeodomain gene specifically expressed in cells of the developing mammalian nervous system. 总被引:1,自引:0,他引:1
下载免费PDF全文

R G Collum P E Fisher M Datta S Mellis C Thiele K Huebner C M Croce M A Israel T Theil T Moroy 《Nucleic acids research》1992,20(18):4919-4925
We report the isolation of a novel human POU domain encoding gene named RDC-1. The POU domain of the RDC-1 encoded protein is highly related to the POU domain potentially encoded by the rat brain-3 sequence and to that of the Drosophila I-POU protein; outside of the POU region, RDC-1 is unrelated to any previously characterized protein. The RDC-1 gene is expressed almost exclusively in normal tissues and transformed cells of neural origin. In the developing mouse and human fetus, RDC-1 is expressed in a spatially and temporally restricted pattern that suggests a critical role in the differentiation of neuronal tissues. In addition, RDC-1 is expressed in a unique subset of tumors of the peripheral nervous system including neuroepitheliomas and Ewing's sarcomas but not neuroblastomas. Based on its unique structural characteristics and expression pattern, we discuss potential functions for the RDC-1 protein. 相似文献
6.
A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 269–279, March–April, 1988. 相似文献
7.
8.
9.
10.
Tae Komai Hiroko Iwanari Yasuhiro Mochizuki Takao Hamakubo Yoichi Shinkai 《Gene expression patterns : GEP》2009,9(7):503-514
It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord. 相似文献
11.
Stem cells in the adult mammalian central nervous system 总被引:23,自引:0,他引:23
Over the past year, evidence has accrued that adult CNS stem cells are a widespread progenitor cell type. These cells may normally replace neurons and/or glia in the adult brain and spinal cord. Advances have been made in understanding the signals that regulate stem cell proliferation and differentiation. A deeper understanding of the structure of germinal zones has helped us move towards identifying stem cells in vivo. Recent studies suggest that the fate of stem cell progeny in vivo may be linked to the complexity of the animal's environment. 相似文献
12.
Cancer stem cells in the mammalian central nervous system 总被引:1,自引:0,他引:1
Pilkington GJ 《Cell proliferation》2005,38(6):423-433
Malignant tumours intrinsic to the central nervous system (CNS) are among the most difficult of neoplasms to treat effectively. The major biological features of these tumours that preclude successful therapy include their cellular heterogeneity, which renders them highly resistant to both chemotherapy and radiotherapy, and the propensity of the component tumour cells to invade, diffusely, the contiguous nervous tissues. The tumours are classified according to perceived cell of origin, gliomas being the most common generic group. In the 1970s transplacental administration of the potent neurocarcinogen, N-ethyl-N-nitrosourea (ENU), enabled investigation of the sequential development of brain and spinal neoplasms by electron microscopy and immunohistochemistry. The significance of the primitive cells of the subependymal plate in cellular origin and evolution of a variety of glial tumours was thereby established. Since then, the development of new cell culture methods, including the in vitro growth of neurospheres and multicellular tumour spheroids, and new antigenic markers of stem cells and glial/neuronal cell precursor cells, including nestin, Mushashi-1 and CD133, have led to a reappraisal of the histological classification and origins of CNS tumours. Moreover, neural stem cells may also provide new vectors in exciting novel therapeutic strategies for these tumours. In addition to the gliomas, stem cells may have been identified in paediatric tumours including cerebellar medulloblastoma, thought to be of external granule cell neuronal derivation. Interestingly, while the stem cell marker CD133 is expressed in these primitive neuroectodermal tumours (PNETs), the chondroitin sulphate proteoglycan neuronal/glial 2 (NG2), which appears to denote increased proliferative, but reduced migratory activity in adult gliomas, is rarely expressed. This is in contrast to the situation in the histologically similar supratentorial PNETs. A possible functional 'switch' between proliferation and migration in developing neural tumour cells may exist between NG2 and ganglioside GD3. The divergent pathways of differentiation of CNS tumours and the possibility of stem cell origin, for some, if not all, such neoplasms remain a matter for debate and continued research, but the presence of self-renewing neural stem cells in the CNS of both children and adults strongly suggests a role for these cells in tumour initiation and resistance to current therapeutic strategies. 相似文献
13.
14.
15.
Recent evidence suggests that blockade of normal excitation in the immature nervous system may have profound effects on neuronal survival during the period of natural cell death. Cell loss following depression of electrical activity in the central nervous system (CNS) may explain the neuropsychiatric deficits in humans exposed to alcohol or other CNS depressants during development. Thus, understanding the role of electrical activity in the survival of young neurons is an important goal of modern basic and clinical neuroscience. Here we review the evidence from in vivo and in vitro model systems that electrical activity participates in promoting neuronal survival. We discuss the potential role of moderate elevations of intracellular calcium in promoting survival, and we address the possible ways in which activity and conventional trophic factors may interact. 相似文献
16.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. 相似文献
17.
18.
The hypothesis is examined that the living mammal generates and uses electromagnetic waves in the lower microwave frequency region as an integral part of the functioning of central and peripheral nervous systems. Analysis of the potential energy of a protein integral to the neural membrane compared to that of an extracellular positive ion yields major known features of action potential generation, and identification of the integral protein as a microwave emitter and absorber by changes in rotational energy state. Prolate spheroidal analysis of the adult human brain/skull cavity shows capability to support modes in the range 200 MHz to 3 GHz; spatial mode properties correspond to gross anatomy and neuromorphology of the brain. Phase-lock loop interaction between lower microwave modes and action potential conduction results in pulse microwave/action potential generation observable by EEG instrumentation as brain waves; alpha waves occur if the corpus callosum is the major neural tract involved. Spatially consistent Lorentz forces of standing microwaves provide physical basis for correspondence of spatial properties of microwave modes with brain anatomy, and for the formation of myelin sheath and the nodes of Ranvier on larger neurons. 相似文献
19.
Alun M. Davies 《Developmental neurobiology》1994,25(11):1334-1348
Neurotrophins were originally identified by their ability to promote the survival of developing neurons. However, recent work on these proteins indicates that they may also influence the proliferation and differentiation of neuron progenitor cells and regular several differentiated traits of neurons throughout life. Moreover, the effects of neurotrophins on survival have turned out to be more complex than originally thought. Some neurons switch their survival requirements from one set of neurotrophins to another during development, and several neurotrophins may be involved in regulating the survival of a population of neurons at any one time. Much of our understanding of the developmental physiology of neurotrophins has come from studying neurons of the peripheral nervous system. Because these neurons and their progenitors are segregated into anatomically discrete sites, it has been possible to obtain these cell for in vitro experimental studies from the earliest stage of their development. The recent generation of mice having null mutations in the neurotrophin and neurotrophin receptor genes has opened up an unparalleled opportunity to assess the physiological relevance of the wealth of data obtained from these in vitro studies. Here I provide a chronological account of the effects of members of the NGF family of neurotrophins on cells of the neural lineage with special reference to the peripheral nervous system. 1994 John Wiley & Sons, Inc. 相似文献
20.
O. S. Alekseeva I. P. Grigor’ev D. E. Korzhevskii 《Journal of Evolutionary Biochemistry and Physiology》2017,53(4):249-258
The review summarizes current data on neuroglobin, the heme-containing protein discovered in mammalian nerve cells in 2000. It presents general characteristics of neuroglobin as well as data on its evolutionary changes and expression across different taxa. Neuroglobin distribution in specific brain structures and outside the brain is described. The issue of the occurrence of neuroglobin not only in neurons but also in astroglial cells is discussed. Subcellular localization of neuroglobin is characterized with a special focus on its detection in the nucleus of nerve cells, suggesting its involvement in nuclear functions. Current ideas on the probable functional significance of neuroglobin are reported. Neuroglobin is presumed to be involved in metabolism of reactive nitrogen and oxygen species as well as in intracellular signaling pathways. Besides, neuroglobin has neuroprotective and antiapoptotic functions. Since its expression changes during ontogenesis, its neuroprotective role in ageing is specifically highlighted. Changes in expression and localization of neuroglobin are suggested to influence the adaptive potential of an organism. 相似文献