首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
High-throughput proteomics is made possible by a combination of modern mass spectrometry instruments capable of generating many millions of tandem mass (MS(2)) spectra on a daily basis and the increasingly sophisticated associated software for their automated identification. Despite the growing accumulation of collections of identified spectra and the regular generation of MS(2) data from related peptides, the mainstream approach for peptide identification is still the nearly two decades old approach of matching one MS(2) spectrum at a time against a database of protein sequences. Moreover, database search tools overwhelmingly continue to require that users guess in advance a small set of 4-6 post-translational modifications that may be present in their data in order to avoid incurring substantial false positive and negative rates. The spectral networks paradigm for analysis of MS(2) spectra differs from the mainstream database search paradigm in three fundamental ways. First, spectral networks are based on matching spectra against other spectra instead of against protein sequences. Second, spectral networks find spectra from related peptides even before considering their possible identifications. Third, spectral networks determine consensus identifications from sets of spectra from related peptides instead of separately attempting to identify one spectrum at a time. Even though spectral networks algorithms are still in their infancy, they have already delivered the longest and most accurate de novo sequences to date, revealed a new route for the discovery of unexpected post-translational modifications and highly-modified peptides, enabled automated sequencing of cyclic non-ribosomal peptides with unknown amino acids and are now defining a novel approach for mapping the entire molecular output of biological systems that is suitable for analysis with tandem mass spectrometry. Here we review the current state of spectral networks algorithms and discuss possible future directions for automated interpretation of spectra from any class of molecules.  相似文献   

2.
The literature dealing with the detection, isolation, purification and characterization of cyanogenic glycosides has been integrated with spectral and chemical data as well as other techniques from our laboratory to establish a method for the positive identification of glycosides of this type. The compounds are arranged into biosynthetically related groups (those derived from l-phenylalanine; l-tyrosine; l-leucine, l-valine; l-isoleucine; those with cyclopentene rings and pseudocyanogenic glycosides) and features of each of the above procedures are critically reviewed and spectral data for each group presented (IR, MS, UV and NMR). The NMR spectra of TMS ethers of cyanogenic glycosides have proven especially useful in chemical structure determination. This information is sufficient to permit identification of any of the 26 known glycosides as well as certain uncharacterized ones.  相似文献   

3.
Identification of proteins and their modifications via liquid chromatography-tandem mass spectrometry is an important task for the field of proteomics. However, because of the complexity of tandem mass spectra, the majority of the spectra cannot be identified. The presence of unanticipated protein modifications is among the major reasons for the low spectral identification rate. The conventional database search approach to protein identification has inherent difficulties in comprehensive detection of protein modifications. In recent years, increasing efforts have been devoted to developing unrestrictive approaches to modification identification, but they often suffer from their lack of speed. This paper presents a statistical algorithm named DeltAMT (Delta Accurate Mass and Time) for fast detection of abundant protein modifications from tandem mass spectra with high-accuracy precursor masses. The algorithm is based on the fact that the modified and unmodified versions of a peptide are usually present simultaneously in a sample and their spectra are correlated with each other in precursor masses and retention times. By representing each pair of spectra as a delta mass and time vector, bivariate Gaussian mixture models are used to detect modification-related spectral pairs. Unlike previous approaches to unrestrictive modification identification that mainly rely upon the fragment information and the mass dimension in liquid chromatography-tandem mass spectrometry, the proposed algorithm makes the most of precursor information. Thus, it is highly efficient while being accurate and sensitive. On two published data sets, the algorithm effectively detected various modifications and other interesting events, yielding deep insights into the data. Based on these discoveries, the spectral identification rates were significantly increased and many modified peptides were identified.  相似文献   

4.
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.  相似文献   

5.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

6.
MOTIVATION: Comparing tandem mass spectra (MSMS) against a known dataset of protein sequences is a common method for identifying unknown proteins; however, the processing of MSMS by current software often limits certain applications, including comprehensive coverage of post-translational modifications, non-specific searches and real-time searches to allow result-dependent instrument control. This problem deserves attention as new mass spectrometers provide the ability for higher throughput and as known protein datasets rapidly grow in size. New software algorithms need to be devised in order to address the performance issues of conventional MSMS protein dataset-based protein identification. METHODS: This paper describes a novel algorithm based on converting a collection of monoisotopic, centroided spectra to a new data structure, named 'peptide finite state machine' (PFSM), which may be used to rapidly search a known dataset of protein sequences, regardless of the number of spectra searched or the number of potential modifications examined. The algorithm is verified using a set of commercially available tryptic digest protein standards analyzed using an ABI 4700 MALDI TOFTOF mass spectrometer, and a free, open source PFSM implementation. It is illustrated that a PFSM can accurately search large collections of spectra against large datasets of protein sequences (e.g. NCBI nr) using a regular desktop PC; however, this paper only details the method for identifying peptide and subsequently protein candidates from a dataset of known protein sequences. The concept of using a PFSM as a peptide pre-screening technique for MSMS-based search engines is validated by using PFSM with Mascot and XTandem. AVAILABILITY: Complete source code, documentation and examples for the reference PFSM implementation are freely available at the Proteome Commons, http://www.proteomecommons.org and source code may be used both commercially and non-commercially as long as the original authors are credited for their work.  相似文献   

7.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

8.
Protein and peptide mass analysis and amino acid sequencing by mass spectrometry is widely used for identification and annotation of post-translational modifications (PTMs) in proteins. Modification-specific mass increments, neutral losses or diagnostic fragment ions in peptide mass spectra provide direct evidence for the presence of post-translational modifications, such as phosphorylation, acetylation, methylation or glycosylation. However, the commonly used database search engines are not always practical for exhaustive searches for multiple modifications and concomitant missed proteolytic cleavage sites in large-scale proteomic datasets, since the search space is dramatically expanded. We present a formal definition of the problem of searching databases with tandem mass spectra of peptides that are partially (sub-stoichiometrically) modified. In addition, an improved search algorithm and peptide scoring scheme that includes modification specific ion information from MS/MS spectra was implemented and tested using the Virtual Expert Mass Spectrometrist (VEMS) software. A set of 2825 peptide MS/MS spectra were searched with 16 variable modifications and 6 missed cleavages. The scoring scheme returned a large set of post-translationally modified peptides including precise information on modification type and position. The scoring scheme was able to extract and distinguish the near-isobaric modifications of trimethylation and acetylation of lysine residues based on the presence and absence of diagnostic neutral losses and immonium ions. In addition, the VEMS software contains a range of new features for analysis of mass spectrometry data obtained in large-scale proteomic experiments. Windows binaries are available at http://www.yass.sdu.dk/.  相似文献   

9.
When studying the set of biologically active peptides (the so‐called peptidome) of a cell type, organ, or entire organism, the identification of peptides is mostly attempted by MS. However, identification rates are often dismally unsatisfactory. A great deal of failed or missed identifications may be attributable to the wealth of modifications on peptides, some of which may originate from in vivo post‐translational processes to activate the molecule, whereas others could be introduced during the tissue preparation procedures. Preliminary knowledge of the modification profile of specific peptidome samples would greatly improve identification rates. To this end we developed an approach that performs clustering of mass spectra in a way that allows us to group spectra having similar peak patterns over significant segments. Comparing members of one spectral group enables us to assess the modifications (expressed as mass shifts in Dalton) present in a peptidome sample. The clustering algorithm in this study is called Bonanza, and it was applied to MALDI‐TOF/TOF MS spectra from the mouse. Peptide identification rates went up from 17 to 36% for 278 spectra obtained from the pancreatic islets and from 21 to 43% for 163 pituitary spectra. Spectral clustering with subsequent advanced database search may result in the discovery of new biologically active peptides and modifications thereof, as shown by this report indeed.  相似文献   

10.
Gentzel M  Köcher T  Ponnusamy S  Wilm M 《Proteomics》2003,3(8):1597-1610
Liquid chromatography tandem mass spectrometry is a major tool for identifying proteins. The fragment spectra of peptides can be interpreted automatically in conjunction with a sequence database search. With the development of powerful automatic search engines, research now focuses on optimizing the result returned from database searches. We present a series of preprocessing steps for fragment spectra to increase the accuracy and specificity of automatic database searches. After processing, the correct amino acid sequences from the database can be related better to the fragment spectra. This increases the sensitivity and reliability of protein identifications, especially with very large genomic databanks, and can be important for the systematic characterization of post-translational modifications.  相似文献   

11.
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set.  相似文献   

12.
MOTIVATION: Ion-type identification is a fundamental problem in computational proteomics. Methods for accurate identification of ion types provide the basis for many mass spectrometry data interpretation problems, including (a) de novo sequencing, (b) identification of post-translational modifications and mutations and (c) validation of database search results. RESULTS: Here, we present a novel graph-theoretic approach for solving the problem of separating b ions from y ions in a set of tandem mass spectra. We represent each spectral peak as a node and consider two types of edges: type-1 edge connecting two peaks probably of the same ion types and type-2 edge connecting two peaks probably of different ion types. The problem of ion-separation is formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, representing b, y and others ions, respectively, through maximizing the total weight of type-1 edges while minimizing the total weight of type-2 edges within each partitioned subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME (PaRtition of Ion types in tandem Mass spEctra). The tests on a large amount of simulated mass spectra and 19 sets of high-quality experimental Fourier transform ion cyclotron resonance tandem mass spectra indicate that an accuracy level of approximately 90% for the separation of b and y ions was achieved. AVAILABILITY: The executable code of PRIME is available upon request. CONTACT: xyn@bmb.uga.edu.  相似文献   

13.
An important but difficult problem in proteomics is the identification of post-translational modifications (PTMs) in a protein. In general, the process of PTM identification by aligning experimental spectra with theoretical spectra from peptides in a peptide database is very time consuming and may lead to high false positive rate. In this paper, we introduce a new approach that is both efficient and effective for blind PTM identification. Our work consists of the following phases. First, we develop a novel tree decomposition based algorithm that can efficiently generate peptide sequence tags (PSTs) from an extended spectrum graph. Sequence tags are selected from all maximum weighted antisymmetric paths in the graph and their reliabilities are evaluated with a score function. An efficient deterministic finite automaton (DFA) based model is then developed to search a peptide database for candidate peptides by using the generated sequence tags. Finally, a point process model-an efficient blind search approach for PTM identification, is applied to report the correct peptide and PTMs if there are any. Our tests on 2657 experimental tandem mass spectra and 2620 experimental spectra with one artificially added PTM show that, in addition to high efficiency, our ab-initio sequence tag selection algorithm achieves better or comparable accuracy to other approaches. Database search results show that the sequence tags of lengths 3 and 4 filter out more than 98.3% and 99.8% peptides respectively when applied to a yeast peptide database. With the dramatically reduced search space, the point process model achieves significant improvement in accuracy as well. AVAILABILITY: The software is available upon request.  相似文献   

14.
Bandeira N 《BioTechniques》2007,42(6):687, 689, 691 passim
Significant technological advances have accelerated high-throughput proteomics to the automated generation of millions of tandem mass spectra on a daily basis. In such a setup, the desire for greater sequence coverage combines with standard experimental procedures to commonly yield multiple tandem mass spectra from overlapping peptides-typical observations include peptides differing by one or two terminal amino acids and spectra from modified and unmodified variants of the same peptides. In a departure from the traditional spectrum identification algorithms that analyze each tandem mass spectrum in isolation, spectral networks define a new computational approach that instead finds and simultaneously interprets sets of spectra from overlapping peptides. In shotgun protein sequencing, spectral networks capitalize on the redundant sequence information in the aligned spectra to deliver the longest and most accurate de novo sequences ever reported for ion trap data. Also, by combining spectra from multiple modified and unmodified variants of the same peptides, spectral networks are able to bypass the dominant guess/confirm approach to the identification of posttranslational modifications and alternatively discover modifications and highly modified peptides directly from experimental data. Open-source implementations of these algorithms may be downloaded from peptide.ucsd.edu.  相似文献   

15.
Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.  相似文献   

16.
Most tandem mass spectrometry (MS/MS) database search algorithms perform a restrictive search that takes into account only a few types of post-translational modifications (PTMs) and ignores all others. We describe an unrestrictive PTM search algorithm, MS-Alignment, that searches for all types of PTMs at once in a blind mode, that is, without knowing which PTMs exist in nature. Blind PTM identification makes it possible to study the extent and frequency of different types of PTMs, still an open problem in proteomics. Application of this approach to lens proteins resulted in the largest set of PTMs reported in human crystallins so far. Our analysis of various MS/MS data sets implies that the biological phenomenon of modification is much more widespread than previously thought. We also argue that MS-Alignment reveals some uncharacterized modifications that warrant further experimental validation.  相似文献   

17.
A notable inefficiency of shotgun proteomics experiments is the repeated rediscovery of the same identifiable peptides by sequence database searching methods, which often are time-consuming and error-prone. A more precise and efficient method, in which previously observed and identified peptide MS/MS spectra are catalogued and condensed into searchable spectral libraries to allow new identifications by spectral matching, is seen as a promising alternative. To that end, an open-source, functionally complete, high-throughput and readily extensible MS/MS spectral searching tool, SpectraST, was developed. A high-quality spectral library was constructed by combining the high-confidence identifications of millions of spectra taken from various data repositories and searched using four sequence search engines. The resulting library consists of over 30,000 spectra for Saccharomyces cerevisiae. Using this library, SpectraST vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits. A unique advantage of SpectraST is its full integration into the popular Trans Proteomic Pipeline suite of software, which facilitates user adoption and provides important functionalities such as peptide and protein probability assignment, quantification, and data visualization. This method of spectral library searching is especially suited for targeted proteomics applications, offering superior performance to traditional sequence searching.  相似文献   

18.
De novo peptide sequencing via tandem mass spectrometry.   总被引:10,自引:0,他引:10  
Peptide sequencing via tandem mass spectrometry (MS/MS) is one of the most powerful tools in proteomics for identifying proteins. Because complete genome sequences are accumulating rapidly, the recent trend in interpretation of MS/MS spectra has been database search. However, de novo MS/MS spectral interpretation remains an open problem typically involving manual interpretation by expert mass spectrometrists. We have developed a new algorithm, SHERENGA, for de novo interpretation that automatically learns fragment ion types and intensity thresholds from a collection of test spectra generated from any type of mass spectrometer. The test data are used to construct optimal path scoring in the graph representations of MS/MS spectra. A ranked list of high scoring paths corresponds to potential peptide sequences. SHERENGA is most useful for interpreting sequences of peptides resulting from unknown proteins and for validating the results of database search algorithms in fully automated, high-throughput peptide sequencing.  相似文献   

19.
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.  相似文献   

20.
Bu D  Zhao Y  Cai L  Xue H  Zhu X  Lu H  Zhang J  Sun S  Ling L  Zhang N  Li G  Chen R 《Nucleic acids research》2003,31(9):2443-2450
Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein-protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11,855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号