首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peripheral hyaline blebs (podosomes) of macrophages   总被引:8,自引:6,他引:2       下载免费PDF全文
The plasmalemma and hyaline ectoplasm together constitute the sensory and motor organ of macrophages. The purpose of this study was to isolate this cell fraction in order to analyze it biochemically and functionally. Brief sonification of warmed rabbit lung macrophages caused release of heterodisperse hyaline blebs and filopodia, which were easily collected by differential centrifugation. Viewed in the electron microscope, these structures consisted of membrane-bounded sacs principally containing actin filaments. Some contained secondary lysosomes. They were enriched threefold over whole cell homogenates in specific adenylate cyclase activity and in trichloroacetic-acid-precipitable (125)I when derived from cells labeled with 125(I) by means of a lactoperoxidase-catalyzed reaction. These markers were found to have identical isopycnic densitites when macrophage homogenates were subjected to sedimentation in a focusing sucrose density gradient system, and these markers had densities distinct from those of other cytoplasmic organelles. These markers were therefore assumed to be associated with macrophage plasma membranes. The specific β- glucuronidase activity of the bleb fraction was similar to that of homogenates, but the blebs had considerably lower specific succinic dehydrogenase activity and RNA content, and DNA was undetectable. Electrophoresis of blebs solubilized in sodium dodecyl sulfate on polyacrylamide gels revealed polypeptides co-migrating with macrophage actin-binding protein, myosin, and actin; blebs also had EDTA-activated adenosine triphosphatase activity characteristic of myosin. The concentrations of actin-binding protein and myosin were higher in blebs than in cells or cytoplasmic extracts, whereas actin concentrations were similar (relative to extracts) or only slightly greater (than in cells). Blebs and intact cells had high lactate dehydrogenase activities in the presence but not the absence of Triton X-100. Blebs and cells oxidased 1-[(14)C]glucose, and the rate of glucose oxidation was increased substantially in the presence of latex beads. We conclude that intact sacs of plasmalemma encasing contractile proteins and cytoplasmic enzymes can be isolated from macrophages. They are enriched in myosin and actin-binding protein, indicating that the contractile apparatus is regulated in the cell periphery. These structures have the capacity to respond to environmental signals. We suggest the name "podosomes" for them because of their resemblance to macrophage pseudopodia. We propose that podosome formation results from rapid dissolution of the cortical gel when the membrane is in an actively extended configuration.  相似文献   

2.
Actin and myosin of rabbit pulmonary macrophages are influenced by two other proteins. A protein cofactor is required for the actin activation of macrophage myosin Mg2 ATPase activity, and a high molecular weight actin-binding protein aggregates actin filaments (Stossel T.P., and J.H. Hartwig. 1975. J. Biol. Chem. 250:5706-5711)9 When warmed in 0.34 M sucrose solution containing Mg2-ATP and dithiothreitol, these four proteins interact cooperatively. Acin-binding protein in the presence of actin causes the actin to form a gel, which liquifies when cooled. The myosin contracts the gel into an aggregate, and the rate of aggregation is accelerated by the cofactor. Therefore, we believe that these four proteins also effec the temperature-dependent gelation and aggregation of crude sucrose extracts pulmonary macrophages containing Mg2-ATP and dithiothreitol. The gelled extracts are composed of tangled filaments. Relative to homogenates of resting macrophages, the distribution of actin-binding protein in homogenates of phagocytizing macrophages is altered such that 2-6 times more actin-binding protein is soluble. Sucrose extracts of phagocytizing macrophages gel more rapidly than extracts of resting macrophages. Phagocytosis by pulmonary macrophages involves the formation of peripheral pseudopods containing filaments. The findings suggest that the actin-binding protein initiates a cooperative interaction of contractile proteins to generate cytoplasmic gelation, and that phagocytosis influences the behavior of the actin-binding protein.  相似文献   

3.
Phagocytosis is a prime example of a cellular event in which cell surface perturbation activates the assembly of a filamentous gel beneath the plasma membrane. This gel may be responsible for movement of the membrane around ingestible particles. The molecular mechanism of these events is being approached by the purification of actin, myosin and associated proteins from phagocytic cells and by the study of a human disease, neutrophil actin dysfunction. Novel contractile proteins discovered in mammalian phagocytes include a cofactor that regulates actin:myosin interaction and an actin-binding protein that promotes assembly and gelation of actin. There is evidence that phagocytosis alters the state of the actin-binding protein, and that this alteration may be an early event in the assembly of the actin gel. Cytochalasin B, which inhibits phagocytosis, acts by interfering with the interaction between actin-binding protein and actin. Actin polymerized poorly in the neutrophils of a human infant, and the affected neutrophils were deficient in phagocytosis. Actin assembly is important in phagocytosis and is amenable to biochemical analysis.  相似文献   

4.
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.  相似文献   

5.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

6.
Caldesmon phosphorylation in actin cytoskeletal remodeling   总被引:2,自引:0,他引:2  
Caldesmon is an actin-binding protein that is capable of stabilizing actin filaments against actin-severing proteins, inhibiting actomyosin ATPase activity, and inhibiting Arp2/3-mediated actin polymerization in vitro. Caldesmon is a substrate of cdc2 kinase and Erk1/2 MAPK, and phosphorylation by either of these kinases reverses the inhibitory effects of caldesmon. Cdc2-mediated caldesmon phosphorylation and the resulting dissociation of caldesmon from actin filaments are essential for M-phase progression during mitosis. Cells overexpressing the actin-binding carboxyterminal fragment of caldesmon fail to release the fragment completely from actin filaments during mitosis, resulting in a higher frequency of multinucleated cells. PKC-mediated MEK/Erk/caldesmon phosphorylation is an important signaling cascade in the regulation of smooth muscle contraction. Furthermore, PKC activation has been shown to remodel actin stress fibers into F-actin-enriched podosome columns in cultured vascular smooth muscle cells. Podosomes are cytoskeletal adhesion structures associated with the release of metalloproteases and degradation of extracellular matrix during cell invasion. Interestingly, caldesmon is one of the few actin-binding proteins that is associated with podosomes but excluded from focal adhesions. Caldesmon also inhibits the function of gelsolin and Arp2/3 complex that are essential for the formation of podosomes. Thus, caldesmon appears to be well positioned for playing a modulatory role in the formation of podosomes. Defining the roles of actin filament-stabilizing proteins such as caldesmon and tropomyosin in the formation of podosomes should provide a more complete understanding of molecular systems that regulate the remodeling of the actin cytoskeleton in cell transformation and invasion.  相似文献   

7.
Phagocytosis of opsonized particles by neutrophils involves highly localized alterations in the actin cytoskeleton that result in the formation of prominent pseudopodia and the phagocytic cup. Immunofluorescence microscopy was employed to monitor the distribution of several proteins that can regulate the cytoskeleton in human neutrophils undergoing phagocytosis of opsonized Candida albicans. The small GTPase Cdc42, its inhibitory subunit Rho-GDI, the adapter protein Nck, gamma-p21-activated protein kinase (gamma-Pak), and cofilin were found to undergo rapid association with the developing phagosomes in these cells. In contrast, these signaling proteins were either diffusely distributed in the cytoplasm or enriched in focal points at the base of the cell when optical sections were obtained from regions of the cell not involved in phagocytosis. These results are consistent with Cdc42 being critically involved in initiating the early events in phagocytosis by its ability to activate Pak and the Wiskott-Aldrich Syndrome protein that triggers the localized polymerization of actin. These data provide insights into the molecular mechanisms that trigger changes in the actin cytoskeleton during phagocytosis.  相似文献   

8.
Low concentrations (greater than or equal to 10(-7) M) of cytochalasin B reversibly inhibit the temperature-dependent gelation of actin by an actin-binding protein. The cytochalasin B concentrations which maximally inhibit actin gel formation are 10-fold lower than the concentrations which maximally impair phagocytosis by intact macrophages. Cytochalasin B also prevents the polymerization of monomeric actin in sucrose extracts of macrophages in the absence but not the presence of 0.1 M CKl. 10(-6) M cytochalasin B dissolves macrophage extract gels and gels comprised of purified actin and actin-binding protein by dissociating actin-binding protein from actin filaments. This concentration of cytochalasin B, however, does not depolymerize the actin filatments.  相似文献   

9.
The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.  相似文献   

10.
Sulfated glycoprotein-1 (SGP-1) is a polypeptide secreted by Sertoli cells in the rat. Sequence analysis revealed a 76% sequence similarity with human prosaposin produced by various cell types. Human prosaposin is a 70 kDa protein which is cleaved in the lysosomes into four 10–15 kDa polypeptides termed saposins A, B, C, and D. The function of lysosomal saposins is to either solubilize certain membrane glycolipids or to form complexes with lysosomal enzymes and/or their glycolipid substrate to facilitate their hydrolysis. The present investigation dealt with the delivery of SGP-1 into the phagosomes of Sertoli cells; these phagosomes contain the residual bodies which detach from the late spermatids at the time of spermiation. Immunogold labeling with anti-SGP-1 antibody was found over Sertoli cell lysosomes, but was absent from phagosomes formed after phagocytosis of spermatid residual bodies in the apical Sertoli cell cytoplasm in stages VIII and early IX of the cycle of the seminiferous epithelium. The phagosomes found later in the basal Sertoli cell cytoplasm in stages IX and X of the cycle became labeled with the antibody as the components of the residual bodies rapidly underwent lysis and disappeared from the Sertoli cells. Sertoli cell lysosomes isolated by cell fractionation (estimated purity of 80%) were found to contain a 65 kDa form of SGP-1 or prosaposin, as well as the 15 kDa polypeptides or saposins. Thus, it appears that this unique lysosomal form of SGP-1 reached the Sertoli cell phagosomes and that their derived polypeptides, the saposins, must play a role in the hydrolysis of membrane glycolipids found in phagocytosed residual bodies. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

12.
Cortactin, a multi-domain scaffolding protein involved in actin polymerization, is enriched in podosomes induced by phorbol ester in vascular smooth muscle cells. We generated several functional and truncation mutants of cortactin to probe the roles of various protein interaction domains in the regulation of the dynamics of podosome formation. At the onset of podosome genesis, cortactin clustered near the ends of stress fibers that appeared to act as nucleation platforms onto which the actin polymerization machinery assembled. Translocation of cortactin to these pre-podosome clusters required the intact N-WASp-binding SH3 domain. Overexpression of the C-terminal third of cortactin containing the intact SH3 domain inhibited podosome formation presumably by sequestering of N-WASp and prevented cortactin clustering. Subsequent assembly of the actin-rich core of podosomes required translocation of additional cortactin to the actin core, a process that required the actin-binding repeats, but not the Arp2/3-binding N-terminal acidic region nor the SH3 domain. These results suggest that the SH3 domain and the actin-binding repeat region are involved, respectively, in the early and late stages of podosome formation process.  相似文献   

13.
Structural studies of the class I myosin, MyoE, led to the predictions that loop 4, a surface loop near the actin-binding region that is longer in class I myosins than in other myosin subclasses, might limit binding of myosins I to actin when actin-binding proteins, like tropomyosin, are present, and might account for the exclusion of myosin I from stress fibers. To test these hypotheses, mutant molecules of the related mammalian class I myosin, Myo1b, in which loop 4 was truncated (from an amino acid sequence of RMNGLDES to NGLD) or replaced with the shorter and distinct loop 4 found in Dictyostelium myosin II (GAGEGA), were expressed in vitro and their interaction with actin and with actin-tropomyosin was tested. Saturating amounts of expressed fibroblast tropomyosin-2 resulted in a decrease in the maximum actin-activated Mg2+-ATPase activity of wild-type Myo1b but had little or no effect on the actin-activated Mg2+-ATPase activity of the two mutants. In motility assays, few actin filaments bound tightly to Myo1b-WT-coated cover slips when tropomyosin-2 was present, whereas actin filaments both bound and were translocated by Myo1b-NGLD or Myo1b-GAGEGA in both the presence and absence of tropomyosin-2. When expressed in mammalian cells, like the wild type, the mutant myosins were largely excluded from tropomyosin-containing actin filaments, indicating that in the cell additional factors besides loop 4 determine targeting of myosins I to specific subpopulations of actin filaments.  相似文献   

14.
Time-lapse and electron microscopic observations were made on both epithelial and mesenchymal cells during the reassembly of embryos from dissociated cells of Strongylocentrotus purpuratus. In epithelial cells, where lysosomes are produced through the fusion of saccules formed from Golgi bodies, both phagocytosis of cell debris and resorption of differentiated cell structures were observed. In these cells, the lysosomes migrate and fuse with both autosomes and phagosomes. On the other hand, in the mesenchyme cells, where lysosomes are produced through the direct enlargement of the Golgi body's cisterna, neither phagocytosis nor resorption was observed. The migration of the lysosomes to the epithelial cell margins is the first indication of a re-establishment of cellular polarity after dissociation.  相似文献   

15.
Actin-binding protein (ABP) and myosin are proteins that influence the rigidity and movement, respectively, of actin filaments in vitro. We examined the distribution of ABP and myosin molecules in acetone-fixed rabbit lung macrophages by means of immunofluorescence. The staining for both of these proteins in unspread cells was quite uniform, but was reduced in the nucleus and concentrated slightly in the periphery. The peripheral accumulation of staining attenuated in uniformly spread cells, although filopodia and hyaline veils definitely stained. In cells fixed during ingestion of yeast particles, the brightest staining correlated with the disposition of organelle-excluding pseudopodia initially surrounding the yeast. After phagocytosis was complete and the yeasts resided in intracellular vacuoles, no concentration of staining around the ingested yeasts was detectable. We conclude that ABP and myosin molecules are components of the structural unit of the cell responsible for spreading and phagocytosis, the hyaline cortex, a region known to be rich in actin filaments. The findings are consistent with the theory that these molecules control the rigidity and movement of filaments in the periphery of the living macrophage.  相似文献   

16.
Yeast actin-binding proteins: evidence for a role in morphogenesis   总被引:20,自引:8,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2551-2561
Three yeast actin-binding proteins were identified using yeast actin filaments as an affinity matrix. One protein appears to be a yeast myosin heavy chain; it is dissociated from actin filaments by ATP, it is similar in size (200 kD) to other myosins, and antibodies directed against Dictyostelium myosin heavy chain bind to it. Immunofluorescence experiments show that a second actin-binding protein (67 kD) colocalizes in vivo with both cytoplasmic actin cables and cortical actin patches, the only identifiable actin structures in yeast. The cortical actin patches are concentrated at growing surfaces of the yeast cell where they might play a role in membrane and cell wall insertion, and the third actin-binding protein (85 kD) is only detected in association with these structures. This 85-kD protein is therefore a candidate for a determinant of growth sites. The in vivo role of this protein was tested by overproduction; this overproduction causes a reorganization of the actin cytoskeleton which in turn dramatically affects the budding pattern and spatial growth organization of the yeast cell.  相似文献   

17.
The role of actin, class I myosins and dynamin in endocytic uptake processes is well characterized, but their role during endo-phagosomal membrane trafficking and maturation is less clear. In Dictyostelium, knockout of myosin IB (myoB) leads to a defect in membrane protein recycling from endosomes back to the plasma membrane. Here, we show that actin plays a central role in the morphology and function of the endocytic pathway. Indeed, latrunculin B (LatB) induces endosome tubulation, a phenotype also observed in dynamin A (dymA)-null cells. Knockout of dymA impairs phagosome acidification, whereas knockout of myoB delays reneutralization, a phenotype mimicked by a low dose of LatB. As a read out for actin-dependent processes during maturation, we monitored the capacity of purified phagosomes to bind F-actin in vitro, and correlated this with the presence of actin-binding and membrane-trafficking proteins. Phagosomes isolated from myoB-null cells showed an increased binding to F-actin, especially late phagosomes. In contrast, early phagosomes from dymA-null cells showed reduced binding to F-actin while late phagosomes were unaffected. We provide evidence that Abp1 is the main F-actin-binding protein in this assay and is central for the interplay between DymA and MyoB during phagosome maturation.  相似文献   

18.
A filamentous cytoskeleton in vertebrate smooth muscle fibers.   总被引:28,自引:7,他引:21       下载免费PDF全文
There are three classes of myofilaments in vertebrate smooth muscle fibers. The thin filaments correspond to actin and the thick filaments are identified with myosin. The third class of myofilaments (100 A diam) is distinguished from both the actin and the myosin on the basis of fine structure, solubility, and pattern of localization in the muscle fibers. Direct structural evidence is presented to show that the 100A filament constitute an integrated filamentous network with the dense bodies in the sarcoplasm, and that they are not connected to either the actin or myosin filaments. Examination of (a) isolated dense bodies, (b) series of consecutive sections through the dense bodies, and (c) redistributed dense bodies in stretched muscle fibers supports this conclusion. It follows that the 100-A filaments complexes constitute a structrally distinct filamentous network. Analysis of polyacrylamide gels after electrophoresis of cell fractions that are enriched with respect to the 100-A filaments shows the presence of a new muscle protein with a molecular weight of 55,000. This protein can form filamentous segments that closely resemble in structure the native, isolated 100-A filaments. The results indicate that the filamentous network has a structure and composition that distinguish it from the actin and myosin in vertebrate smooth muscle.  相似文献   

19.
Phagosomal Proteins of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
ABSTRACT. In recognizing food particles, Dictyostelium cell-surface molecules initiate cytoskeletal rearrangements that result in phagosome formation. After feeding D. discoideum cells latex beads, early phagosomes were isolated on sucrose step gradietns. Protein analyses of these vesicles showed that they contained glycoproteins and surface-labeled species corresponding to integral plasma membrane proteins. Cytoskeletal proteins also were associated with phagosomes, including myosin II, actin and a 30 kDa-actin bundling protein. As seen by the acridine orange fluorescence of vesicles containing bacteria, phagosomes were acidified rapidly by a vacuolar H+-ATPase that was detected by immunoblotting. Except for the loss of cytoskeletal proteins, few other changes over time were noted in the protein profiles of phagosomes, suggesting that phagosome maturation was incomplete. The indigestibility of the beads possibly inhibited further endocytic processing, which has been observed by others. Since nascent phagosomes contained molecules of both the cytoskeleton and plasma membrane, they will be useful in studies aimed at identifying specific protein associations occurring between membrane proteins and the cytoskeleton during phagocytosis.  相似文献   

20.
Elmo proteins positively regulate actin polymerization during cell migration and phagocytosis through activation of the small G protein Rac. We identified an Elmo-like protein, ElmoA, in Dictyostelium discoideum that unexpectedly functions as a negative regulator of actin polymerization. Cells lacking ElmoA display an elevated rate of phagocytosis, increased pseudopod formation, and excessive F-actin localization within pseudopods. ElmoA associates with cortical actin and myosin II. TIRF microscopic observations of functional ElmoA-GFP reveal that a fraction of ElmoA localizes near the presumptive actin/myosin II cortex and the levels of ElmoA and myosin II negatively correlate with that of polymerizing F-actin. F-actin-regulated dynamic dispersions of ElmoA and myosin II are interdependent. Taken together, our data suggest that ElmoA modulates actin/myosin II at the cortex to prevent excessive F-actin polymerization around the cell periphery, thereby maintaining proper cell shape during phagocytosis and chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号