首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse testis cells have been separated by equilibrium density centrifugation in gradients of Renografin. Intact testis cells were not damaged by the separation procedure provided that, following separation, the osmolarity was reduced gradually. The various cell types were identified microscopically and by 3H-thymidine labelling with similar results. The present technique has demonstrated that significant variations in cell density occur during spermatogenesis. Approximately ten-fold enrichments of nearly all testis cell types were achieved by equilibrium density separation of testis cell suspensions. More homogeneous cell populations were prepared by density gradient centrifugation of cell fractions obtained from velocity sedimentation separations. Overall enrichments of spermatogonia, by 29-fold; pachytene spermatocytes, 45-fold; dividing meiotic cells, 170-fold; round spermatids, 30-fold; step 11–13 elongating spermatids, 12-fold; Leydig cells, 70-fold; and cytoplasmic fragments, 55-fold, were obtained. In this study, a method for preparation of cell suspensions was also developed to produce higher yields of spermatogonia and young primary spermatocytes; however, the density distribution of these cells was altered.  相似文献   

2.
3.
We produced a monoclonal antibody, designated MC301, against the extract of testicular cells from 12-day-old rats. This age corresponds to the onset of meiosis during testis development. MC301 specifically recognized a 90-kDa glycoprotein, GP90-MC301, which was ubiquitously expressed in various tissues and localized predominantly in the Golgi area of epithelial cells. In adult testes, stage-specific intense expression of GP90-MC301 was shown in the cytoplasm of meiotic spermatogenic cells from the preleptotene to mid-pachytene stages. Immunoelectron microscopy demonstrated that the glycoprotein was localized in spermatocytes on protein synthesis-related organelles such as the Golgi apparatus, endoplasmic reticulum, and nuclear envelope. The plasma membrane of spermatocytes and the intercellular space surrounding the cells were also immunoreactive. No specific immunoreactivity was found on the organelles in other testicular cells. A considerable amount of the glycoprotein was detected in the extracellular fluid of the testes. These results suggest that GP90-MC301 is produced mainly by spermatocytes in the testis and secreted into the surrounding intercellular space. The evidence for developmentally regulated expression of GP90-MC301 in the meiotic spermatogenic cells suggests a possible role for the glycoprotein in male germ cell meiosis.  相似文献   

4.
5.
6.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

7.
8.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

9.
Dmrt1 has been suggested to play significant roles in sex determination and differentiation, but various expression patterns and cell types have been observed in the testis of vertebrates. Polyploid gibel carp, because of the multiple modes of unisexual gynogenesis and sexual reproduction, has become a unique case to explore the evolution of sex determination and differentiation. However, the sex-determination related genes in gibel carp have remained unknown. In this study, we identified and characterized 4 cDNAs of Dmrt1 genes. Subsequently, a polyclonal antibody specific to CagDMRT1 was prepared to examine its expression and distribution patterns at protein level. Significantly, both relative real-time PCR and Western blot detection confirmed predominant expression of CagDmrt1 in the adult testis of gibel carp. Moreover, the intensive expression of CagDMRT1 around spermatogenic cysts was revealed during spermatogenesis. And, following immunofluorescence co-localization of CagDMRT1 and CagVASA, a prominent CagDMRT1 expression in Sertoli cells and a mild CagDMRT1 expression in spermatogenic cells including spermatogonia and primary spermatocytes were clearly characterized. The CagDMRT1 signal in Sertoli cells is extensively distributed in both nuclei and cytoplasm, while the CagDMRT1 in spermatogonia and primary spermatocytes is mainly expressed in nuclei, and there is only the remained CagDMRT1 signal in the cytoplasm of secondary spermatocytes. These findings suggest that DMRT1 should be related to testis differentiation and spermatogenesis in gibel carp.  相似文献   

10.
Testis-specific transcriptional control   总被引:9,自引:0,他引:9  
Grimes SR 《Gene》2004,343(1):11-22
  相似文献   

11.
12.
In order to characterize trout Sertoli cells and germ cells obtained after testis dissociation and cell separation, we have studied their morphology, ultrastructure, survival, and ability to express differentiated activities in primary cultures. After dissociation, the fine structure of Sertoli cells does not differ from that observed in situ and only minor changes are shown for at least 13 days. Until they are flattened in a monolayer, they keep the ability to retain germ cells on their surface. When flattened, some of them are able to divide. At the opposite of meiotic germ cells, spermatogonia can develop independently of Sertoli cells. They are able to proliferate during at least 10 days. Spermatocytes and spermatids are obtained as single cells and multinucleated giant cells (symplasts). In the absence of somatic cells, their maximal viability is approximately 5 days, whereas spermatocytes adhering to Sertoli cells can survive at least 10–12 days, provided trout lipoproteins are present. Spermatocytes are able to differentiate to spermatids, although this process is impaired for some ceils. The adhesion of spermatogonia and spermatocytes to Sertoli cells is specific, mediated by desmosome-like junctions and favored by lipoproteins. These data are compared to what is known in mammals and in amphibians.  相似文献   

13.
Metallothionein (MT), a cysteine-rich heavy metal-binding protein, has been considered to play a role in the homeostatic control and detoxification of heavy metals, such as zinc, copper, and cadmium. In the present study, we have utilized a digoxigenin-labeled riboprobe to localize MT mRNA only by bright-field optics in the testis and prostate of the rat. In the rat testis, MT mRNA was found predominantly in primary spermatocytes and also in secondary spermatocytes and spermatids, but not in the spermatogonia, Sertoli cells, and Leydig cells. On the other hand, MT protein was present in these spermatogenic cells as well as in spermatozoa and Sertoli cells. In the prostate, MT mRNA was found predominantly in the epithelium of the dorsolateral lobes, but not in the ventral lobe, which is in agreement with the observed localization of MT protein. The utilization of both in situ hybridization and immunohistochemical staining on the same tissue specimens show MT gene expression in specific cell types in the male genital organs.  相似文献   

14.
Effects of thyroid hormones on Leydig cells in the postnatal testis   总被引:4,自引:0,他引:4  
Thyroid hormones (TH) stimulate oxidative metabolism in many tissues in the body, but testis is not one of them. Therefore, in this sense, testis is not considered as a target organ for TH. However, recent findings clearly show that TH have significant functions on the testis in general, and Leydig cells in particular; this begins from the onset of their differentiation through aging. Some of these functions include triggering the Leydig stem cells to differentiate, producing increased numbers of Leydig cells during differentiation by causing proliferation of Leydig stem cells and progenitors, stimulation of the Leydig cell steroidogenic function and cellular maintenance. The mechanism of action of TH on Leydig cell differentiation is still not clear and needs to be determined in future studies. However, some information on the mechanisms of TH action on Leydig cell steroidogenesis is available. TH acutely stimulate testosterone production by the Leydig cells in vitro via stimulating the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; StAR is associated with intracellular trafficking of cholesterol into the mitochondria during steroid hormone synthesis. However, the presence and/or the types of TH receptors in Leydig cells and other cell types of the Leydig cell lineage is still to be resolved. Additionally, it has been shown that thyrotropin-releasing hormone (TRH), TRH receptor and TRH mRNA in the testis in many mammalian species are seen exclusively in Leydig cells. Although the significance of the latter observations are yet to be determined, these findings prompt whether hypothalamo-pituitary-thyroid axis and hypothalamo-pituitary-testis axis are short-looped through Leydig cells.  相似文献   

15.
While the molecular cues initiating testis determination have been identified in mammals, the cellular interactions involved in generating a functional testis with cord and interstitial compartments remain poorly understood. Previous studies have shown that testis cord formation relies on cell migration from the adjacent mesonephros, and have implicated immigrant peritubular myoid cells in this process. Here, we used recombinant organ culture experiments to show that immigrant cells are endothelial, not peritubular myoid or other interstitial cells. Inhibition of endothelial cell migration and vascular organisation using a blocking antibody to VE-cadherin, also disrupted the development of testis cords. Our data reveal that migration of endothelial cells is required for testis cord formation, consistent with increasing evidence of a broader role for endothelial cells in establishing tissue architecture during organogenesis.  相似文献   

16.
This work deals with the study of the migration rate of rabbit cells in collagen and fibrin gels. It has been shown that dermal fibroblasts more actively migrate in collagen gel, whereas in fibrin gel bone-marrow stromal cells do. In the study of activities of matrix metalloproteinases (MMPs) that are synthesized by cells in the process of cultivation, MMP-2 activity in cells of both types was established as being higher during migration in collagen gel, while MMP-9 activity was so during migration in fibrin gel. The different cell migration rates may be due to the cell properties, to the activity of their synthesized MMP, and to the effect up this process of the cell microenvironment (collagen or fibrin).  相似文献   

17.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

18.
19.
Apoptosis in testicular germ cells has been demonstrated in many mammalian species. However, little is known about the stallion (Equus caballus) and rates of apoptosis during spermatogenesis. Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable method for identification and quantification of apoptotic germ cells in histological tissue sections from stallion testis. Seminiferous tubules from eight stallions with normal testis size and semen quality were evaluated according to stage of seminiferous epithelium to determine the germ cell types and stages where apoptosis most commonly occurs. Spermatogonia and spermatocytes were the most common germ cell types labeled by the TUNEL assay. A low rate of round and elongated spermatids were labeled by the TUNEL assay. Mean numbers of TUNEL-positive germ cells per 100 Sertoli cell nuclei were highest in stages IV (15.5 +/- 1.0) and V (13.5 +/- 1.1) of the seminiferous epithelial cycle (P < 0.001). An intermediate level of apoptosis was detected in stage VI (P < 0.02). These stages (IV-VI) correspond to meiotic divisions of primary spermatocytes and mitotic proliferation of B1 and B2 spermatogonia. Establishing basal levels of germ cell apoptosis is a critical step towards understanding fertility and the role of apoptosis in regulating germ cell numbers during spermatogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号