首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Using the Lowicryl K4M embedding technique, together with indirect immunoferritin or immunogold labeling on ultra-thin sections, tubulin, calmodulin and phospholipase A2 were distinctly localized in ejaculated bull spermatozoa. Calmodulin was concentrated on the plasma membrane, nucleus, post-acrosomal substance, and, in lesser amounts, between coarse fibers and axonemal microtubules of the flagellum. Phospholipase A2 was distributed evenly along the plasma membrane, nucleus, acrosome, post-acrosomal substance, and in the flagellum, on mitochondria, fibrous sheath, coarse fibers, between coarse fibers and axonemal microtubules. Antibodies to tubulin labeled only axonemal microtubules, including the central pair of microtubules. Patterns of tubulin labeling were identical when ferritin granule- or gold particle-conjugated antibodies were tested. In agreement with our previous biochemical studies demonstrating calmodulin binding to phospholipase A2, concomitant with enhancement of phospholipase A2 activity (Arch Biochem Biophys 241:413, 1985), the overlapping distribution of calmodulin and phospholipase A2 in several parts of the sperm suggests that these proteins may play a concerted role in male gamete function in preparation for or during fertilization. The distinct distribution of tubulin along flagellum microtubules indicates their special function in sperm mobility.  相似文献   

2.
In the present study, immunogold labeling of ultrathin sections of ejaculated sperm was used to obtain insight into the ultrastructural localization and presumable function of type II cAMP-dependent protein kinase in sperm motion. In the flagellum, a human-specific isoform of the RIIα subunit was located on the axonemal microtubule wall, whereas a different isoform of broader specificity was present in the cytoplasm at the periphery of the coarse fibers and fibrous sheath. This isoform was also found in the mitochondria. The human-specific RIIα subunit is likely linked to microtubules by a unique binding protein of Mr 72kD. These findings are in agreement with the concept of a concerted mechanism involving phosphorylation of both the axonemal microtubules and the fibrous structures for the regulation of mammalian sperm motion. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Affinity-purified monospecific antibodies and indirect immunogold and immunoferritin labeling on ultra-thin sections of low-temperature Lowicryl K4M-embedded samples were used to study the redistribution of calmodulin in ram spermatids and epididymal spermatozoa at the electron microscopic level. Calmodulin appeared as an integral component of well-defined structures or organelles of these cells. In young spermatids, calmodulin was localized in the nucleus, cytoplasm, and developing acrosome. During spermatogenesis and epididymal maturation, calmodulin left the acrosome to reach the perinuclear substance and finally became concentrated in the post-acrosomal area of the head, although some calmodulin remained associated with the tip of the acrosome. Such a redistribution is consistent with the preferential location of Ca2+ in the post-acrosomal cytoplasm of ejaculated spermatozoa. Calmodulin was also observed in the flagellum associated with the plasma membrane and with the motility apparatus, between coarse fibers and axonemal microtubules. These changes in calmodulin distribution may account for the Ca2+-dependent regulation of spermatogenesis and sperm maturation. Calmodulin therefore appears to be a pleiotropic regulator of male gamete development and functions.  相似文献   

4.
The expression of mRNAs for the RI alpha, RII alpha, and C alpha subunits of cAMP-dependent protein kinase has been studied in different ram germ cells. The sizes of the specific RI alpha, RII alpha, and C alpha mRNAs, observed in germ cells were 1.6, 2.0, and 2.6 kb, respectively. RI alpha and C alpha mRNAs were mainly expressed in primary spermatocytes. A postmeiotic expression predominating in early spermatids was unique to RII alpha mRNA. The location of RI, RII alpha, and C subunits in well-defined organelles of ram spermatids and epididymal sperm was assessed by immunogold electron microscopy. In spermatids, RI, RII alpha, and C were essentially present in the forming acrosome and, to a lesser extent, in the nucleus. During sperm epididymal maturation, the protein kinases disappeared from the acrosome and were detected in a variety of sperm functional areas, such as the tip of the acrosome, the motility apparatus, and the membrane network. The present study on subunits of cAMP-dependent protein kinase supports the concept that specific functions are attached to the different subunits in that it shows differential expression and differential subcellular localization in germ cells.  相似文献   

5.
Proper sperm function depends on adequate ATP levels. In the mammalian flagellum, ATP is generated in the midpiece by oxidative respiration and in the principal piece by glycolysis. In locations where ATP is rapidly utilized or produced, adenylate kinases (AKs) maintain a constant adenylate energy charge by interconverting stoichiometric amounts of ATP and AMP with two ADP molecules. We previously identified adenylate kinase 1 and 2 (AK1 and AK2) by mass spectrometry as part of a mouse SDS-insoluble flagellar preparation containing the accessory structures (fibrous sheath, outer dense fibers, and mitochondrial sheath). A germ cell-specific cDNA encoding AK1 was characterized and found to contain a truncated 3' UTR and a different 5' UTR compared to the somatic Ak1 mRNA; however, it encoded an identical protein. Ak1 mRNA was upregulated during late spermiogenesis, a time when the flagellum is being assembled. AK1 was first seen in condensing spermatids and was associated with the outer microtubular doublets and outer dense fibers of sperm. This localization would allow the interconversion of ATP and ADP between the fibrous sheath where ATP is produced by glycolysis and the axonemal dynein ATPases where ATP is consumed. Ak2 mRNA was expressed at relatively low levels throughout spermatogenesis, and the protein was localized to the mitochondrial sheath in the sperm midpiece. AK1 and AK2 in the flagellar accessory structures provide a mechanism to buffer the adenylate energy charge for sperm motility.  相似文献   

6.
Identification of a protein in the fibrous sheath of the sperm flagellum   总被引:2,自引:0,他引:2  
The fibrous sheath is a unique cytoskeletal component in the principal-piece segment of the mammalian sperm flagellum. Monoclonal antibody ATC was shown by indirect immunofluorescence (IIF) to bind to the principal piece of the flagellum of permeabilized mouse, rat, and hamster sperm, but not to that region of guinea pig, rabbit, or human sperm. IIF on isolated fibrous sheaths confirmed that the antigen was present in the fibrous sheath of mouse, rat, and hamster sperm. On Western blots of mouse spermatozoa, ATC identified a relatively insoluble major antigen with an apparent molecular weight of 67,000 (Mr 67,000). Hamster sperm fibrous sheaths contain an antigen of Mr 66,000, while rat sperm fibrous sheaths contain an antigen of Mr 65,500. The antigen was first detected in late spermatids, as determined by immunohistochemical procedures on sections of mouse, rat, and hamster testis. The antigen was not detected on Western blots of mouse brain, kidney, liver, or thymus. These results indicate that ATC recognizes a protein integral to the fibrous sheath of the principal piece of sperm detected by immunohistochemistry late in spermiogenesis that is probably restricted to the male germ cell line.  相似文献   

7.
The distribution of actin in hamster sperm cells was studied during spermiogenesis, epididymal transit, in vitro capacitation and acrosome reaction by immunogold procedures using a polyclonal and two monoclonal antiactin antibodies. A predominant actin labeling (F-actin) was detected in the subacrosomal space of spermatids. Actin labeling was also observed under the plasma membrane of intercellular bridges and along the outer acrosomal membrane. In late spermatids there was both F-actin depolymerization and a loss of actin immunolabeling, thus suggesting a dispersion of G-actin monomers. No obvious labeling was evidenced in residual bodies. This pattern was observed with the three antiactin probes. In contrast, an actin labeling reappeared over the fibrous sheath of the flagellum in epididymal spermatozoa but only when the polyclonal antibody was used. Only one single actin reactive band was detected by immunoblotting of sperm extracts. Since the sperm tails were NBD phallacidin negative they were considered to contain either G-actin or actin oligomers rather than bundles of actin filaments. It is suggested that G-actin originating in the head of late spermatids was redistributed to the flagellum of epidymal spermatozoa. No further changes were noted after capacitation and acrosome reaction thus indicating no apparent effect on actin polymerization and distribution.  相似文献   

8.
Chung EY 《Tissue & cell》2008,40(3):195-205
The ultrastructures of germ cells, Leydig cells, and Sertoli cells during spermatogenesis in male Boleophthalmus pectinirostris were investigated by electron microscopic observations. During the period of maturation divisions, well-developed Leydig cells have three major morphological characteristics: a vesicular nucleus, mitochondria with tubular cristae, and a number of smooth endoplasmic reticulum. Based on cytoplasmic features, it appears that Leydig cells are responsible for the synthesis of male sex steroids. Although no clear evidence of steroidogenesis was found in the Sertoli cells, they were found to perform a phagocytic function in the seminiferous lobules. Most Sertoli cells contain granules thought to represent deposited glycogen or lipid but there is no indication of a transfer of nutrients to the spermatids. During the period of germ cell degeneration, several characteristics of phagocytosis appear in the cytoplasm of the Sertoli cells. In particular, it is assumed that the Sertoli cells are involved in the degeneration and resorption of undischarged spermatids after spermiation. No acrosome of the sperm is formed. The structure of the spermatozoon in B. pectinirostris is very similar and closely resembles to those of suborder Gobioidei (perciform type teleosts). The flagellum or sperm tail shows the typical 9+2 array of microtubules.  相似文献   

9.
The molecular forms and activities of ram DNA ligase have been investigated during spermatogenesis from the stage of early round spermatids to ejaculated spermatozoa. Through germ cell maturation, two consecutive forms of the enzyme (6S and 7S) have been found. The 6S form (DNA ligase II) is observed in primary and secondary spermatocyte, as well as in round spermatids. The 7S form (DNA ligase I) is present in elongated spermatids and in the sole round cell population with spermatogonia and young primary spermatocytes. In ram germ cells, DNA ligase I and DNA ligase II appear to be respectively associated with DNA replication repair. The absence of DNA ligase II associated with the absence of DNA repair in testicular and ejaculated spermatozoa might be related to male infertility.  相似文献   

10.
11.
Ultrastructural changes of spermatids during spermiogenesis in a freshwater stingray, Himantura signifer, are described. Differentiation of spermatids begins with modification of the nuclear envelope adjacent to the Golgi apparatus, before the attachment of the acrosomal vesicle. A fibrous nuclear sheath extends over the nuclear surface from the site of acrosomal adherence. The conical apical acrosome is formed during nuclear elongation. At the same time, chromatin fibers shift from an initially random arrangement, assume a longitudinal orientation, and become helical before final nuclear condensation. An axial midpiece rod is formed at the posterior end of nucleus and connects to the base of the sperm tail. Numerous spherical mitochondria surround the midpiece axis. The tail originating from the posterior end of the midpiece is composed of the usual 9 + 2 axoneme accompanied by two longitudinal columns, which are equal in size and round in cross section. The two longitudinal columns are absent at the end piece. A distinctive feature of freshwater stingray sperm is its spiral configuration.  相似文献   

12.
Previous data showed that complexin I, a SNARE regulatory protein, is localized in and/or around the acrosome and is necessary for the acrosome reaction in sperm. To understand how complexin I regulates the acrosome reaction, we used complexin-GST pulldown assays to identify interacting proteins. We showed that both complexins I and II bound mouse sperm dynamin 2. Dynamin 2 is a 100 kDa GTPase essential to many aspects of endocytosis but its potential role in exocytosis is unknown. Dynamin 2 is expressed in rat testis and widely expressed in other tissues; however, the function of dynamin 2 in germ cells is uncertain. Dynamin 2 protein was detected in mouse testis and was most abundant in or around the developing acrosome of spermatids. In addition, dynamin 2 was co-localized with complexin I in the acrosomal region of mammalian sperm. Its co-localization and interaction with complexin I suggest that dynamin 2 may play a role during acrosome formation and/or acrosomal exocytosis.  相似文献   

13.
14.
Synbranchus marmoratus, is a protogynic diandric species in which two types of males, primary and secondary, are found. In both types, the germinal compartment in the testes is of the unrestricted lobular type, but in secondary (sex reversed females) males the lobules develop within the former ovarian lamellae. In the present study, the germinal compartment was examined in both types of males using light microscopy as well as scanning and transmission electron microscopy. Germinal compartment is limited by a basement membrane and contains Sertoli and germ cells. During maturation, processes of Sertoli cells form the borders of spermatocysts containing isogenic germ cells. Characteristically, type A and type B spermatogonia have a single nucleolus and grouped mitochondria associated with dense bodies or nuage. Type B spermatogonia, spermatocytes and spermatids are joined by cytoplasmatic bridges and are confined within spermatocysts. Secondary spermatocytes are difficult to find, indicating that this stage is of short duration. Biflagellated spermatozoa have a rounded head, no acrosome, and possess a midpiece consisting of two basal bodies, each of which produces a flagellum with a typical 9+2 microtubular composition. No associations occur between sperm and Sertoli cells. There were no differences between spermatogenesis in primary and secondary males in this protogynic, diandric fish.  相似文献   

15.
16.
We have investigated the cellular characteristics, especially chromatin condensation and the basic nuclear protein profile, during spermiogenesis in the common tree shrew, Tupaia glis. Spermatids could be classified into Golgi phase, cap phase, acrosome phase, and maturation phase. During the Golgi phase, chromatin was composed of 10-nm and 30-nm fibers with few 50-nm to 60-nm knobby fibers. The latter were then transformed into 70-nm knobby fibers during the cap phase. In the acrosome phase, all fibers were packed into the highest-order knobby fibers, each about 80–100 nm in width. These chromatin fibers became tightly packed in the maturation phase. In a mature spermatozoon, the discoid-shaped head was occupied by the acrosome and completely condensed chromatin. H3, the core histone, was detected by immunostaining in all nuclei of germ cell stages, except in spermatid steps 15–16 and spermatozoa. Protamine, the basic nuclear protein causing the tight packing of sperm chromatin, was detected by immunofluorescence in the nuclei of spermatids at steps 12–16 and spermatozoa. Cross-immunoreactivity of T. glis H3 and protamine to those of primates suggests the evolutionary resemblance of these nuclear basic proteins in primate germ cells. This work was supported by the Thailand Research Fund (Senior Research Fellowship to Prof. Prasert Sobhon).  相似文献   

17.
Spermatogenesis in the mussel Perna viridis was studied by electron microscopy. Results demonstrated that cytological development in spermatogonia and spermatocytes was similar to that previously described in other Mytilidae. Acrosome formation began with the arising of proacrosomal vesicles in spermatogonia. The abundance of proacrosomal vesicles increased in spermatocytes, which were flagellated. However, during spermiogenesis, dual patterns of acrosome development as well as flagellum development could be found among spermatids in a male gonad. The two lines of acrosome formation in spermatids ultimately gave rise to morphologically similar acrosomes. The two lines of flagellum development in spermatids resulted in the formation of sperm cells with either a typically posteriorly directed tail or an anteriorly directed tail. Received: 22 July 1998 / Accepted: 12 September 1998  相似文献   

18.
Kinesin light chain 3 (KLC3) is the only known kinesin light chain expressed in post-meiotic male germ cells. We have reported that in rat spermatids KLC3 associates with outer dense fibers and mitochondrial sheath. KLC3 is able to bind to mitochondria in vitro and in vivo employing the conserved tetratrico-peptide repeat kinesin light chain motif. The temporal expression and association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the spermatid cell periphery to the developing midpiece suggesting a role in midpiece formation. In fibroblasts, expression of KLC3 results in formation of large KLC3 aggregates close to the nucleus that contain mitochondria. However, the molecular basis of the aggregation of mitochondria by KLC3 and its role in sperm tail midpiece formation are not clear. Here we show that KLC3 expression from an inducible system causes mitochondrial aggregation within 6h in a microtubule dependent manner. We identified the mitochondrial outer membrane porin protein VDAC2 as a KLC3 binding partner. To analyze a role for KLC3 in spermatids we developed a transgenic mouse model in which a KLC3ΔHR mutant protein is specifically expressed in spermatids: this KLC3 mutant protein binds mitochondria and causes aggregate formation, but cannot bind outer dense fibers. Male transgenic mice display significantly reduced reproductive efficiency siring small sized litters. We observed defects in the mitochondrial sheath structure in a number of transgenic spermatids. Transgenic males have a significantly reduced sperm count and produce spermatozoa that exhibit abnormal motility parameters. Our results indicate that KLC3 plays a role during spermiogenesis in the development of the midpiece and in the normal function of spermatozoa.  相似文献   

19.
The expression of cathepsin H (CH) in differentiating rat spermatids was studied by an immunoelectron microscopic technique. Cathepsin H was detected in the acrosome throughout differentiation steps but cathepsins B, D, and L and lysosomal membrane protein (LGP107) were not. Early in the formation of the acrosome, CH signals were observed in Golgi vesicles but not in acrosomal vesicles. At steps 3–4, CH signals were associated with a fibrous material attached to the inner surface of the vesicle membrane on the Golgi side. At steps 5–6, this fibrous material accumulated to form an electron-dense sheet to which CH signals were confined. The rest of the acrosome was negative for the enzyme. At steps 11–12, the CH-positive fibrous sheet expanded from the apical to the ventral side of the sperm head. After step 16, the surface of outer dense fibers in the flagellar axoneme and reticulated bodies were stained for CH. In epididymal sperm, CH signals were detected in the acrosome as well as on the surface of the outer dense fibers running from the middle to the principal piece. By immunofluorescence staining, CH was found to be localized to the acrosome, middle piece, and principal piece.  相似文献   

20.
The fibrous sheath is a cytoskeletal structure located in the principal piece of mammalian sperm flagella. Previous studies showed that glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS), a germ cell-specific glycolytic isozyme that is required for sperm motility, is tightly bound to the fibrous sheath. To determine if other glycolytic enzymes are also bound to this cytoskeletal structure, we isolated highly purified fibrous sheath preparations from mouse epididymal sperm using a sequential extraction procedure. The isolated fibrous sheaths retain typical ultrastructural features and exhibit little contamination by axonemal or outer dense fiber proteins in Western blot analyses. Proteomic analysis using peptide-mass fingerprinting and MS/MS peptide fragment ion matching identified GAPDHS and two additional glycolytic enzyme subunits, the A isoform of aldolase 1 (ALDOA) and lactate dehydrogenase A (LDHA), in isolated fibrous sheaths. The presence of glycolytic enzymes in the fibrous sheath was also examined by Western blotting. In addition to GAPDHS, ALDOA, and LDHA, this method determined that pyruvate kinase is also tightly bound to the fibrous sheath. These data support a role for the fibrous sheath as a scaffold for anchoring multiple glycolytic enzymes along the length of the flagellum to provide a localized source of ATP that is essential for sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号