首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Progesterone and certain corticosteroids, such as deoxycorticosterone (DOC) and triamcinolone acetonide (TA), can stimulate gonadotropin surges in rats. The mechanism of these steroids could involve a pituitary or hypothalamic site of action, or both. Progesterone and TA did not alter the ability of GnRH to release LH or FSH either before, during, or after the gonadotropin surge induced by these steroids in estrogen-primed ovariectomized female rats. Furthermore, progesterone, TA and DOC were unable to induce a gonadotropin surge in short-term estrogen-primed castrated male rats. These results suggested a hypothalamic rather than a pituitary site of action of progesterone and corticosteroids in the release of gonadotropins. Since progestin and corticosteroid receptors are present in catecholamine neurons, a role for catecholamine neurotransmission in progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats was examined. Catecholamine synthesis inhibitors and specific alpha 1 (prazosin), alpha 2 (yohimbine), and beta (propranolol) receptor antagonists were used to determine the role of catecholamine neurotransmission in the steroid-induced surges of LH and FSH. Both of the catecholamine synthesis inhibitors, alpha-methyl-p-tyrosine HCl (alpha-MPT), a tyrosine hydroxylase inhibitor, and sodium diethyldithiocarbamate (DDC), an inhibitor of dopamine-beta-hydroxylase, attenuated the ability of progesterone, TA, and DOC to induce LH surges when administered 3 h and 1 h, respectively, before the steroid. DDC also suppressed the ability of progesterone, TA, and DOC to induce FSH surges. Rats treated with alpha-MPT had lower mean FSH values than did steroid controls, but the effect was not significant. Both the alpha 1 and alpha 2 adrenergic antagonists, prazosin and yohimbine, significantly suppressed the ability of progesterone, TA, and DOC to induce LH and FSH surges. In contrast, the beta adrenergic receptor blocker, propranolol, had no effect upon the ability of progesterone, TA, or DOC to facilitate LH and FSH secretion. Finally, the stimulatory effect of progesterone and TA upon LH and FSH release was found to be blocked by prior treatment with a GnRH antagonist, further suggesting hypothalamic involvement. In conclusion, this study provides evidence that the stimulation of gonadotropin release by progesterone and corticosteroids is mediated through a common mechanism, and that this mechanism involves the release of GnRH, most likely through catecholaminergic stimulation. Furthermore, catecholamine neurotransmission, through alpha 1 and alpha 2 but not beta receptor sites, is required for the expression of progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats.  相似文献   

3.
The effects of the anterior hypothalamic area (AHA) implants of gonadal steroid estrogen and progesterone as well as the effects of electrical stimulation and electrolytic lesion confined in this area on the gonadotropin secretion were investigated in ovariectomized estradiol (20 microgram sc)-primed adult Wistar rats housed in light and temperature controlled room. Progesterone implants evoked the rise of serum LH by 6 hr whereas estradiol implants suppressed serum FSH by 24 hr after implantation. Electrical stimulation effectively depleted both gonadotropins with a latency not shorter than 6 hr. The lesion significantly prevented FSH elevation investigated at 72 hr post ovariectomy and potentiated FSH secretion in response to estradiol treatment at 3 week post ovariectomy. The result revealed the involvment of the AHA in LH release mechanism which required progesterone activation while its involvement in FSH regulatory mechanism depended upon estrogen. The area was elucidated as the inhibitory as well as the stimulatory loci for the feedback action of estrogen on FSH release.  相似文献   

4.
Estradiol secreted by the maturing follicle is the primary trigger for the surge of gonadotropins leading to ovulation. Progesterone has stimulatory or inhibitory actions on this estrogen-induced gonadotropin surge depending upon the time and dose of administration. The administration of progesterone to immature ovariectomized rats primed with a low dose of estradiol induced a well-defined LH surge and prolonged FSH release, a pattern similar to the proestrus surge of gonadotropins. A physiological role of progesterone is indicated in the normal ovulatory process because a single injection of the progesterone antagonist RU 486 on the day of proestrus in the adult cycling rat and on the day of the gonadotropin surge in the pregnant mare's serum gonadotropin stimulated immature rat resulted in an attenuated gonadotropin surge and reduced the number of ova per ovulating rat. Progesterone administration brought about a rapid LHRH release and an decrease in nuclear accumulation of estrogen receptors in the anterior pituitary but not the hypothalamus. The progesterone effect was demonstrated in vitro in the uterus and anterior pituitary and appears to be confined to occupied estradiol nuclear receptors. In in vivo experiments the progesterone effect on estradiol nuclear receptors appeared to be of approximately 2-h duration, which coincided with the time period of progesterone nuclear receptor accumulation after a single injection of progesterone. During the period of progesterone effects on nuclear estrogen receptors, the ability of estrogens to induce progesterone receptors was impaired. Based on the above results, a model is proposed for the stimulatory and inhibitory effects of progesterone on gonadotropin secretion.  相似文献   

5.
6.
Injections of 2 mg of progesterone into ovariectomized estrogen-primed rats significantly increased serum LH and FSH concentrations 3, 5 and 8 hr later. Receptor blockers of noradrenaline (NA), dopamine (DA) or acetylcholine (ACH), phenoxybenzamine (20 mg/kg body weight), pimozide (1mg/kg body weight) or atropine (700 mg/kg body weight), respectively, prevented the progesterone-induced gonadotropin release. On the other hand, none of them blocked the gonadotropin release following unilateral electrochemical stimulation (100 microA for 60 sec) of the medial preoptic area which occurred 0.5 and 1.5 hr later, although pimozide or atropine reduced serum LH concentrations at 4.0 hr after stimulation. Furthermore, the sites of action of NA, DA and ACH with respect to LH release were examined by intracerebral implantation in ovariectomized estrogen-primed rats DA or ACH, when implanted unilaterally into the medial preoptic urea, induced a significant increase in serum LH 5 hr later, whereas NA decreased LH levels. Implantations of NA or ACH into the bed nucleus of the stria terminalis or the medial amygdala increased serum LH although the effect of NA into the latter was not statistically significant. Only implantations of NA among the three substances into the lateral septum induced LH release. These results suggest that all of NA, DA and ACH play stimulatory roles in the regulation of gonadotropin secretion, and that there are regional differences of their effectivenesses in releasing LH within the limbic-preoptic area.  相似文献   

7.
Earlier observations in our laboratory indicated that i.v. infusion of human/rat corticotropin-releasing hormone (hCRH) suppresses pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release in ovariectomized rhesus monkeys. Since cortisol secretion increased significantly as well, it was not possible to exclude the possibility that this inhibitory effect of hCRH on gonadotropins was related to the activation of the pituitary/adrenal axis. The purpose of the present study was to determine the role of pituitary/adrenal activation in the effect of hCRH on LH and FSH secretion. We compared the effects of 5-h i.v. infusions of hCRH (100 micrograms/h, n = 7) and of human adrenocorticotropic hormone (ACTH) (1-24) (5 micrograms/h, n = 3; 10 micrograms/h, n = 3, 20 micrograms/h, n = 3) to ovariectomized monkeys on LH, FSH, and cortisol secretion. As expected, during the 5-h ACTH infusions, cortisol levels increased by 176-215% of baseline control, an increase similar to that observed after CRH infusion (184%). However, in contrast to the inhibitory effect observed during the CRH infusion, LH and FSH continued to be released in a pulsatile fashion during the ACTH infusions, and no decreases in gonadotropin secretion were observed. The results indicated that increases in ACTH and cortisol did not affect LH and FSH secretion and allowed us to conclude that the rapid inhibitory effect of CRH on LH and FSH pulsatile release was not mediated by activation of the pituitary/adrenal axis.  相似文献   

8.
This career retrospective describes how the initial work on the mechanism of hormone action provided the tools for the study of hirsutism, virilism, and polycystic ovarian disease. After excessive ovarian and or adrenal androgen secretion in polycystic ovarian disease had been established, the question whether the disease was genetic or acquired, methods to manage hirsutism and methods for the induction of ovulation were addressed. Recognizing that steroid gonadotropin feedback was an important regulatory factor, initial studies were done on the secretion of LH and FSH in the ovulatory cycle. This was followed by the study of basic mechanisms of steroid-gonadotropin feedback system, using castration and steroid replacement and the events surrounding the natural onset of puberty. Studies in ovariectomized rats showed that progesterone was a pivotal enhancer of estrogen-induced gonadotropin release, thus accounting for the preovulatory gonadotropin surge. The effects of progesterone were manifested by depletion of the occupied estrogen receptors of the anterior pituitary, release of hypothalamic LHRH, and inhibition of enzymes that degrade LHRH. Progesterone also promoted the synthesis of FSH in the pituitary. The 3α,5α-reduced metabolite of progesterone brought about selective LH release and acted using the GABA(A) receptor system. The 5α-reduced metabolite of progesterone brought about selective FSH release; the ability of progesterone to bring about FSH release was dependent on its 5α-reduction. The GnRH neuron does not have steroid receptors; the steroid effect was shown to be mediated through the excitatory amino acid glutamate, which in turn stimulated nitric oxide. These observations led to the replacement of the long-accepted belief that ovarian steroids acted directly on the GnRH neuron by the novel concept that the steroid feedback effect was exerted at the glutamatergic neuron, which in turn regulated the GnRH neuron. The neuroprotective effects of estrogens on brain neurons are of considerable interest.  相似文献   

9.
The mare is the only non-primate species known to display estrous signs after ovariectomy and adrenal hormones have been implicated as a possible cause. Moreover, in several species, estradiol seems to have a stimulatory effect on the hypothalamic-pituitary-adrenal axis. The aim of the present study was to compare the effect of ACTH (tetracosactide) on pertinent hormones [cortisol, progesterone, androstenedione, testosterone (intact and ovariectomized mares) and estradiol (ovariectomized mares only)] in intact mares in estrus with the same mares after ovariectomy (n=5). Blood samples were collected hourly from 12:00 until 14:00 h the following day (half-hourly between 14:00 and 17:00 h) on two occasions, with saline or ACTH treatment at 14:00 h (saline treatment day or ACTH treatment day). The mares, both when intact and after ovariectomy, showed a significant increase in all measured hormones, except estradiol (not measured in intact mares), after ACTH treatment, lasting at least 3h post-treatment (P<0.001). On the saline treatment day, cortisol levels in ovariectomized mares were lower than in intact mares in the evening (18:00-23:00 h), but higher at night (24:00-05:00 h). No differences in cortisol response between mares, when intact and after ovariectomy, were found after ACTH treatment (P=0.3). Androstenedione levels were lower (P<0.001) and increased less after ACTH treatment in ovariectomized mares, as compared to when intact (P<0.05). Progesterone concentrations were lower in the ovariectomized mares at night (24:00-05:00 h) on the saline treatment day and at all times on the ACTH treatment day (P<0.05). Testosterone concentrations were lower in ovariectomized mares on both treatment days, as compared to when intact (P<0.001). It was concluded that ovariectomy affected basal cortisol pattern. Ovarian androstenedione and testosterone contributed to the basal circulating levels and, in the case of androstenedione, was stimulated by ACTH. Endogenous estradiol did not act stimulatory on adrenal gland hormone production in the mare.  相似文献   

10.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

11.
Progesterone secretion remained significantly higher during diestrus in the 5-day cyclic rat than in the 4-day cyclic animal. Injection of a sufficient amount of antiprogesterone serum (APS) at 2300 h on metestrus in a 5-day cycle advances ovulation and completion of the cycle by 1 day in the majority of animals (75 and 80%, respectively). Progesterone (250 micrograms) administered with APS eliminated the effect of the antiserum. Within 2 h after administration of APS, levels of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) elevated significantly, while a significant elevation of plasma estradiol above the control value followed as late as 36 h after the treatment. None of the 5-day cyclic rats treated with APS showed ovulatory increases of FSH and LH at 1700 h on the second day of diestrus, although 3 of the 4 animals receiving the same treatment ovulated by 1100 h on the following day. The onset of ovulatory release of gonadotropins might have been delayed for several hours in these animals. These results indicate that recurrence of the 5-day cycle is due to an elevated progesterone secretion on the morning of diestrus, and suggest that a prolongation of luteal progesterone secretion in an estrous cycle suppresses gonadotropin secretion. Rather than directly blocking the estrogen triggering of ovulatory LH surge, the prolonged secretion of luteal progesterone may delay the estrogen secretion itself, which decreases the threshold of the neural and/or hypophyseal structures for ovulatory LH release.  相似文献   

12.
Neuropharmacological studies suggest a common inhibitory role for the hypothalamic dopaminergic pathway on gonadotropin and prolactin pituitary release, in humans. As a consequence, it has been hypothesized that the inhibition of hypothalamic tyrosine-hydroxylase and the subsequent fall in dopamine synthesis is involved in the positive feedback of progesterone on LH and PRL pituitary release in estrogen-primed hypogonadal women. The aim of our study was to verify whether an inhibition of tyrosine-hydroxylase may really account for the progesterone action on gonadotropin and prolactin secretion. For this purpose, we compared the effect of a specific tyrosine-hydroxylase inhibitor (alpha-methyl-p-tyrosine, AMPT) with the effect of progesterone on gonadotropin and prolactin release in estrogen-primed postmenopausal women. Progesterone induced a marked release of LH (delta: 129.7 +/- 16.5 mlU/ml, mean +/- SE) and a slight increase in FSH (delta: 39.4 +/- 11.6 mlU/ml) and PRL (delta: 15.3 +/- 2.8 ng/ml) serum levels. Acute or two-day administration of AMPT was followed by a marked rise in PRL serum levels (delta: 82.9 +/- 13.8 and 88.3 +/- 8.2 ng/ml, respectively) while there were no significant increases in serum LH (delta: 5.4 +/- 2.6 and 3.3 +/- 4.6 mlU/ml) and FSH (delta: 3.4 +/- 0.9 and -0.4 +/- 2.9) concentrations. The ineffectiveness of a specific tyrosine-hydroxylase inhibitor in simulating the progesterone effect on gonadotropin secretion seems to negate the hypothesis that a reduction in hypothalamic dopaminergic activity mediates the positive feedback of progesterone on gonadotropin release.  相似文献   

13.
In the human polycystic ovarian syndrome, glucocorticoids have been demonstrated to have beneficial effects in inducing ovulation in a number of cases. These beneficial effects were assumed to be due to suppression of adrenal overproduction of androgens. However, the possibility exists that glucocorticoids may directly regulate gonadotropin secretion and thereby improve menstrual rhythm and ovulatory activity. Herein, we report that the corticoid, deoxycorticosterone, and the synthetic glucocorticoid, triamcinolone acetonide, like progesterone (P4), are able to induce luteinizing hormone and follicle-stimulating hormone surges and facilitate ovulation in the pregnant mare serum gonadotropin-primed rat. This effect is not shared by cortisol. Prolactin release was also stimulated by deoxycorticosterone, cortisol, and progesterone, but not by triamcinolone acetonide. Similar to progesterone, triamcinolone acetonide and deoxycorticosterone administration caused a loss of fluid retention in the uterus. This effect of triamcinolone acetonide and deoxycorticosterone may be related to progesterone action as opposed to anti-inflammatory action since cortisol had no effect on uterine fluid retention. These findings raise the possibility that the beneficial effects seen with glucocorticoids in inducing ovulation in polycystic ovarian syndrome may be due in part to their direct effects upon the release of gonadotropins.  相似文献   

14.
The effect of Cu2+, Ni2+, Zn2+ and their complexes with LHRH on the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) was estimated in in vivo experiments with the use of the method proposed by Ramirez and McCann. Ovariectomized, estradiol, and progesterone pretreated rats were injected intravenously either with LHRH alone, a metal ion alone, a mixture of metal and hormone, or a metal-LHRH complex. A metal alone or a mixture of it with LHRH did not affect gonadotropin release at all or no more than LHRH alone. However, the complex of Cu2+ with LHRH brought about a high release of LH and even higher release of FSH. This indicates that copper complex is more effective than metal-free LHRH. The nickel complex showed a similar although lesser effect. The zinc complex had similar potency to free LHRH though higher FSH-releasing ability was noticed. We conclude that copper-, nickel-, and zinc-LHRH complexes were more potent than the peptide hormone itself and promoted the FSH release in the ovariectomized, estradiol, and progesterone pretreated rats.  相似文献   

15.
The purpose of the study was to examine the effect of luteal macrophage conditioned medium (LMCM) on progesterone and estradiol production by cultured granulosa cells. Porcine granulosa cells were cultured for 48 h with or without LMCM in the absence or presence of 100 ng/ml LH, FSH or prolactin. Progesterone and estradiol concentrations were measured by radioimmunoassay. Granulosa cells were analyzed histochemically and immunocytochemically for the activity and presence of Δ5, 3β-hydroxysteroid dehydrogenase (3β-HSD), respectively. LMCM stimulated basal and LH-, FSH- or prolactin-induced progesterone secretion. Similarly, LMCM augmented basal and stimulated activity of 3β-HSD in the examined cells. In contrast, LMCM decreased LH- and prolactin-induced estradiol secretion but increased FSH-induced estradiol secretion. These data demonstrate the clear stimulatory effect of LMCM on granulosal progesterone production. It is concluded that substances secreted by macrophages modulate gonadotropin effect on follicular progesterone secretion in a paracrine manner via 3β-HSD activity.  相似文献   

16.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

17.
In female hamsters, the daily rhythm of LH appeared on the 15th or 16th day after birth with a peak occurring at about 16:00 h (14L:10D, lights on 06:00 h). Progesterone concentrations increased and became rhythmic a few days later. In serum samples collected at 14, 16, 18, 20, 25, 30, 40 and 60-62 days of age between 13:00 and 23:00 h, significant rhythms of serum cortisol and corticosterone concentrations were not detected before 25 days of age; furthermore, the phase of the rhythms did not stabilize to the adult pattern until about 40 days of age. As in the adult, significant rhythms were present in both sexes and the levels of cortisol were greater than those of corticosterone. Injection of pig ACTH (50 i.u./kg body wt, i.p.) significantly increased serum cortisol by 10 days of age, but corticosterone did not respond until 25 days of age. Thus, for cortisol at least, the appearance of 24-h rhythms in the serum is probably not dependent on the ability of the adrenal to respond to ACTH. Ovariectomy had no effect on the late afternoon surge of serum cortisol; similarly, adrenalectomy of immature females did not abolish the surge of LH. Ovariectomy did not alter the daily rhythm of pineal melatonin content and pinealectomy had no effect on the daily afternoon surge of LH. These results demonstrate functional independence of circadian rhythms in the pituitary-gonadal axis and the pituitary-adrenal axis of the immature hamster and also independence of daily rhythms of pineal melatonin and pituitary release of LH.  相似文献   

18.
D W Brann  V B Mahesh 《FASEB journal》1991,5(12):2691-2698
Corticosteroids, ACTH, and stress can exert inhibitory and facilitory effects on reproduction. The purpose of this review is to reconcile the divergent effects of corticosteroids on gonadotropin secretion based on recent work in the area. Whether stimulation or inhibition of gonadotropin secretion is observed appears to depend on two important variables: 1) length of exposure, and 2) background of estrogen priming. The acute administration of ACTH and certain corticosteroids to estrogen-primed animals brings about the release of LH and FSH. Corticosteroids have also been shown by some investigators to cause selective release of follicle-stimulating hormone (FSH) both in vitro and in vivo. This selective facilitation of FSH release by corticosteroids may explain many deleterious effects on reproduction observed after adrenalectomy, and it may have relevance in explaining the beneficial effects of corticosteroids in inducing ovulation in anovulatory patients suffering from polycystic ovarian syndrome. Finally, evidence is presented which suggests that adrenal steroids may participate in initiation and synchronization of the preovulatory LH and FSH surge, as well as the secondary FSH surge seen on estrus in the rat.  相似文献   

19.
Stress-dependent activation of the hypothalamo-pituitary-adrenal axis (HPA) can compromise reproductive function in animals and humans. In addition, it has been shown that estrogens are also capable of influencing the activity of the adrenal cortex. The objective of this study was to evaluate the effect of estradiol (E2) on adrenocortical secretion of cortisol and progesterone as well as on pituitary LH-release in cows during stress. Five ovariectomized Brown Swiss cows were exposed to acute restraint stress (2-h immobilization in a trimming chute), either with or without E2 treatment. Blood samples were taken every 15 min during a 5-h period for determination of cortisol progesterone and LH. Our results demonstrate that during the 2-h stress period mean cortisol concentrations significantly (P < 0.05) increased in all cows independent of E2 treatment. Mean progesterone concentrations also increased during stress, but the effect was only significant in E2-untreated cows. In contrast to cortisol and progesterone, mean LH values decreased in all animals during stress, but the decline was not significant. However, significantly lower mean LH values were seen at the end of the stress period comparing to values before stress. In cows without stress, E2 treatment had no significant effect on mean values of all three hormones analyzed. From our results it can be concluded that in ovariectomized cows (a) acute stress increases cortisol and progesterone secretion but decreases LH release and (b) the stress induced adrenocortical and pituitary responses were clearly attenuated under the influence of estradiol.  相似文献   

20.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号