首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The αII-helix (? = ?70.47°, ψ = ?35.75°) is a structure having the same n and h as the (standard) αI-helix (? = ?57.37°, ψ = ?47.49°). Its conformational angles are commonly found in proteins. Using an improved α-helix force field, we have compared the vibrational frequencies of these two structures. Despite the small conformational differences, there are significant predicted differences in frequencies, particularly in the amide A, amide I, and amide II bands, and in the conformation-sensitive region below 900 cm?1. This analysis indicates that αII-helices are likely to be present in bacteriorhodopsin [Krimm, S. & Dwivedi, A. M. (1982) Science 216 , 407–408].  相似文献   

3.
K. Uma  R. Kishore  P. Balaram 《Biopolymers》1993,33(6):865-871
The competing effects of a disulfide bridge and an α-aminoisobutyryl residue (Aib) in determining the conformation of a hexapeptide have been investigated, by comparing the cyclic disulfide (1) and the acylic peptide Boc-Cys(SBzl)-Val-Aib-Ala-Leu-Cys(SBzl)-NHMe ( 2 ). Previously published nmr and crystallographic studies [R. Kishore, S. Raghothama, and P. Balaram (1987) Biopolymers, Vol. 26, pp. 873–891; I. L. Karle, R. Kishore, S. Raghothama, & P. Balaram, (1988) Journal of the American Chemical Society Vol. 110, pp. 1958–1963] have established an antiparallel β-hairpin structure for 1 with a central Aib-Ala β-turn. A comparison of nmr data for 1 and 2 in chloroform and dimethylsulfoxide reveals that the acyclic peptide is conformationally labile. Evidence for a 310-helical conformation in CDCl3 is obtained from sensitivity of NH chemical shifts to temperature and solvent perturbation and low JHNCαH values. Studies in solvent mixtures establish a conformational transition on going from CDCl3 to (CD3)2SO. The changes in NH nmr parameters, together with the observation of several interresidue C H-Ni + 1H nuclear Overhauser effects support a conformation having a central β-turn with extended arms in (CD3)2SO. A single Aib residue appears to stabilize a helix in apolar solvents, for the acyclic hexapeptide, while the disulfide bridge serves to lock the β-hairpin conformation. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Some theoretical studies have predicted that the conformational freedom of the α-aminoisobutyric acid (H-Aib-OH) residue is restricted to the α-helical region of the Ramachandran map. In order to obtain conformational experimental data, two model peptide derivatives, MeCO-Aib-NHMe 1 and ButCO-LPro-Aib-NHMe 2 , have been investigated. The Aib dipeptide 1 crystallizes in the monoclinic system (a = 12.71 Å, b = 10.19 Å, c = 7.29 Å, β = 110.02°, Cc space group) and its crystal structure was elucidated by x-ray diffraction analysis. The azimuthal angles depicting the molecular conformation (? = ?55.5°, ψ = ?39.3°) fall in the α-helical region of the Ramachandran map and molecules are hydrogen-bonded in a three-dimensional network. In CCl4 solution, ir spectroscopy provides evidence for the occurrence of the so-called 5 and C7 conformers stabilized by the intramolecular ii and i + 2 → i hydrogen bonds, respectively. The tripeptide 2 was studied in various solvents [CCl4, CD2Cl2, CDCl3, (CD3)2SO, and D2O] by ir and pmr spectroscopies. It was shown to accommodate predominantly the βII folded state stabilized by the i + 3 → i hydrogen bond. All these experimental findings indicate that the Aib residue displays the same conformational behavior as the other natural chiral amino acid residues.  相似文献   

5.
A comparative study of four peptidomimetics of the sequence Phe-Met-Arg-Phe-amide (FMRFa) was performed to compare the conformational bias caused by trans-2,3-methanomethionine and α-methylmethionine stereoisomers. The specific compounds studied were F[(2S,3S)-cyclo-M] RFa, F[(2R,3R)-cyclo-M]RFa, F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa. Molecular simulations based on CHARMm 22 indicate that γ-turn, inverse γ-turn, and α-helical conformations about the cyclo-M residue are accessible to the two F[cyclo-M]RFa stereoisomers. Similar calculations for F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa indicate that the α-methylamino acids tend to favor α-helical conformations. The nmr data is presented for the four peptidomimetics. Most informative were the rotating frame nuclear Overhauser effect cross peaks between the NH protons proximal to the methionine surrogates, and the Cβ hydrogens. Overall, these nmr data indicate F[(2S,3S)-cyclo-M]RFa and F[(2R,3R)-cyclo-M]RFa preferentially adopt inverse γ-turn and γ-turn conformations, respectively, whereas F[(S)-α-MeM]RFa and F[(R)-α-MeM]RFa tend to form partial left- and right-handed helical structures (although energy differences between the two turn structures, and between the two helical structures are likely to be small). It is suggested that the wider NH-Cα-CO angle of cyclopropane amino acids and their more severe steric requirements around the Cβ carbons force the peptidomimetic N- and C-termini into the same region of conformational space. This favors C7 turns in the cyclopropane amino acid series relative to the less constrained α-methyl derivatives. © 1997 John Wiley & Sons, Inc. Biopoly 42: 439–453, 1997  相似文献   

6.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The conformational properties of α,α-dialkylated amino acid residues possessing acyclic (diethylglycine, Deg: di-n-propylglycine, Dpg; di-n-butylglycine, Dbg) and cyclic (1-amino-cycloalkane-1-carboxylic acid, Acnc) side chains have been compared in solution. The five peptides studied by nmr and CD spectroscopy are Boc-Ala-Xxx-Ala-OMe, where Xxx = Deg(I). Dpg (II), Dbg (III), Ac6c (IV), and Ac7c (V). Delineation of solvent-shielded NH groups have been achieved by solvent and temperature dependence of NH chemical shifts in CDCl3 and (CD3)2SO and by paramagnetic radical induced line broadening in pepiide III. In the Dxg peptides the order of solvent exposure of NH groups is Ala(1) > Ala(3) > Dxg(2), whereas in the Acnc peptides the order of solvent exposure of NH groups is Ala(1) > Acnc(2) > Ala(3). The nmr results suggest that Acnc peptides adopt folded β-turn conformations with Ala(1) and Acnc(2) occupying i + 1 and i + 2 positions. In contrast, the Dxg peptides favor extended C5 conformations. The conformational differences in the two series are clearly borne out in CD studies. The solution conformations of peptides I-III are distinctly different from the β-turn structure observed in crystals. Low temperature nmr spectra recorded immediately after dissolution of crystals of peptide II provide evidence for a structural transition. Introduction of an additional hydrogen-bonding function in Boc-Ala-Dpg-Ala-NHMe (VI) results in a stabilization of a consecutive β-turn or incipient 310-helix in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The conformational preferences of the N-trifluoroacetylated homo-peptides of Cα,α-diethylglycine from monomer to pentamer in chloroform solution were determined by using ir absorption and 1H-nmr. Intramolecular hydrogen bonding was found to be the dominant factor for all NH groups. The likely absence of a conformational transition upon increasing main-chain length, and the remarkable stability to dilution, heating, and addition of perturbing agents, are additional relevant findings of this study. These results are in agreement with those of the fully extended, C5-conformation-forming homo-peptides from the higher homolog Cα,α-di-n-propylglycine, but contrast dramatically to those of the homo-peptides from the lower homolog Cα,α-dimethylglycine, which have been shown to adopt the 310-helical structure.  相似文献   

9.
A complete series of terminally blocked, monodispersed homo-oligopeptides (to the pentamer level) from the sterically demanding, medium-ring alicyclic Cα,α-disubstituted glycine 1-aminocyclooctane-1-carb oxylic acid (Ac8c), and two Ala/Ac8c tripeptides, were synthesized by solution methods and fully characterized. The preferred conformation of all the oligopeptides was determined in deuterochloroform solution by IR absorption and 1H-NMR. The molecular structures of the amino acid derivative Z-Ac8c-OH, the dipeptide pBrBz- (Ac8c)2-OH and the tripeptide pBrBz-(Ac8c)3-OtBu were assessed in the crystal state by X-ray diffraction. Conformational energy computations were performed on the monopeptide Ac-Ac8c-NHMe. Taken together, the results obtained strongly support the view that the Ac8c residue is an effective β-turn and helix former. A comparison is also made with the conformational preferences of α-aminoisobutyric acid, the prototype of Cα, α-disubstituted glycines, and of the other members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n=3, 5–7) investigated so far. The implications for the use of the Ac8c residue in peptide conformational design are considered.  相似文献   

10.
The observation that short, linear alanine-based polypeptides form stable α-helices in aqueous solution has allowed the development of well-defined experimental systems with which to study the influence of amino acid sequence upon the stability of secondary structure. We have performed detailed conformational searches upon six alanine-based peptides in order to rationalize the observed variation in the α-helical stability in terms of side-chain-backbone and side-chain-side-chain interactions. Although a simple, gas-phase, potential model was used to obtain the conformational energies for these peptides, good agreement was obtained with experiment regarding their relative α-helical stabilities. Our calculations clearly indicate that valine, isoleucine, and phenylalanine residues should destabilize the α-helical conformation when included within alanine-based peptides because of energetically unfavorable side-chain-backbone interactions, which tend to result in the formation of regions of 310-helix. In the case of valine, the destabilization most probably arises from entropic effects as the isopropyl side chain can assume more orientations in the 310-helical form of the peptide. A detailed examination of very short-range interactions in these peptides has also indicated that an interaction, involving fewer than five consecutive residues, whose stabilizing effect reinforces that of the (i, i + 4) hydrogen bond may be the basis of the requirement for increased nucleation (σ) and propagation parameters (s) required by Zimm–Bragg theory to predict the α-helical content for compounds in this class of short peptides. Our calculations complement recent work using modified Zimm–Bragg and Lifson–Roig theories of the helix–coil transition, and are consistent with molecular dynamics simulations upon linear peptides in aqueous solution. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Copolymers of L -lysine and L -isoleucine [poly(L -Lysf,L -Val1 ? f)] containing 4–15% isoleucine were investigated using potentiometric titration and circular dichroism (CD) spectroscopy. With increasing isoleucine content, β-sheet formation is favored over α-helix formation at high pH and room temperature. The fraction of β-sheet present, as a function of pH, calculated from titrations of poly(L -Lys85.2,L -Ile14.8), agreed well with data obtained from CD studies for the same copolymer. Thermodynamic parameters were determined from titrations using the method of Zimm and Rice; the partial free energy (ΔG°C → β) at 25° for the coil-to-β-sheet transition for isoleucine was estimated to be ?515 cal/mol; from the temperature dependence of free energy, the partial entropy (ΔS°cβ), and the partial free enthalpy (ΔH°c → β) of the coil → β transition for isoleucine is estimated to be 2.6 e.u. and 260 cal/mol, respectively. The partial thermodynamic parameters obtained for lysine are in good agreement with literature values. It is concluded from these studies that isoleucine has a very high potential for a β-sheet formation.  相似文献   

12.
In the present paper we describe the synthesis, purification, single-crystal x-ray analysis, solution conformational characterization, and conformational energy calculations of the cyclic tetrapeptide cyclo- (β-Ala-L -Pro-β-Ala-L -Val). The peptide was synthesized by classical solution methods and the cyclization of the free tetrapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from ethanol with two independent molecules in the unit cell. All peptide bonds are trans. The nmr molecular conformation in the acetonitrile solution as well as that derived from the molecular dynamic simulation in vacuo is quite different from those observed in the solid state and is very similar to that previously observed for the parent compound cyclo-(β-Ala-L -Pro-β-Ala-L -Pro). © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Many of the bilayer spanning segments of membrane transport proteins contain proline residues, and most of them are believed to occur in α-helical form. A proline residue in the middle of an α-helix is known to produce a bend in the helix, and recent studies have focused on characterizing such a bend at atomic level. In the present case, molecular dynamics (MD) studies are carried out on helix F model of bacteriorhodopsin (BR) Ace-(Ala)7-Trp-(Ala)2-Tyr-Pro-(Ala)2-Trp-(Ala)8-NHMe and compared with Ace-(Ala)7-Trp-(Ala)2-Tyr-(Ala)3-Trp-(Ala)8-NHMe in which the proline is replaced by alanine. The bend in the helix is characterized by structural parameters such as kink angle (α), wobble angle (θ), virtual torsion angle (ρ), and the hydrogen bond distance d (Op?3 … Np+1). The average values and the flexibility involved in these parameters are evaluated. The correlation among the bend related parameters are estimated. The equilibrium side chain orientations of tryptophan and tyrosine residues are discussed and compared with those found in the recently proposed model of bacteriorhodopsin. Finally, a detailed characterization of the bend in terms of secondary structures such as αI, αII and goniometric helices are discussed, which can be useful in the interpretation of the experimental results on the secondary structures of membrane proteins involving the proline residue. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The preferred conformations of N-acetyl-N′-methyl amides of some dialkylglycines have been determined by empirical conformational-energy calculations; minimum-energy conformations were located by minimizing the energy with respect to all the dihedral angles of the molecules. The conformational space of these compounds is sterically restricted, and low-energy conformations are found only in the regions of fully extended and helical structures. Increasing the bulkiness of the substituents on the Cα, the fully extended conformation becomes gradually more stable than the helical structure preferred in the cases of dimethylglycine. This trend is, however, strongly dependent on the bond angles between the substituents on the Cα atom: In particular, helical structures are favored by standard values (111°) of the N-Cα-C′ angle, while fully extended conformations are favored by smaller values of the same angle, as experimentally observed, for instance, in the case of α,α-di-n-propylglycine.  相似文献   

15.
In this work we present the development of the multiple sequence approximation (AGADIRms) and the standard one-sequence approximation (AGADIRIs) within the framework of AGADIR's α-helix formation model. The extensive comparison between these new formulations and the original one [AGADIR; v. Muñoz and L. Serrano (1994),Nat. Struct. Biol., Vol. 1, pp. 399–409] indicates that the standard one-sequence approximation is virtually identical to the multiple sequence approximation, while the previously used residue partition function approximation [Muñoz and Serrano (1994); (1995), J. Mol. Biol., Vol. 245, pp. 275–296] is less precise. The calculations of the average helical content performed with AGADIR are precise for peptides of less than 30 residues and progressively diverge from the multiple sequence formulation for longer peptides. The helicity distribution of heteropolypeptides with less than 50% average helical content is also well described, while those of quasi-homopolymers with high helical content tend to be flattened. These inaccuracies lead to an underestimation of 0.017 kcal/mol for the mean-residue enthalpic contribution in AGADIR, as compared to AGADIRms and AGADIRIs. The other energy contributions to α-helix stability are not affected by the original statistical approximation. We also discuss the particularities of the model for α-helix formation utilized in AGADIR and compare it with the classical Zimm-Bragg and Lifson-Roig theories. Moreover, we develop the mathematical relationships between the basic AGADIR energy contributions and helix nucleation and elongation, which permit the quantitative comparison between formalisms. Remarkably, the comparison between AGADIRms and the Lifson-Roig formalism shows that, despite the differences on treating helix/coil cooperativity, both theories give virtually identical results when an equivalent set of parameters is used. This indicates that the helix/coil transition is a solid theory independent of the particularities of the model for α-helix formation. © 1997 John Wiley & Sons, Inc. Biopoly 41: 495–509, 1997.  相似文献   

16.
N. V. Joshi  V. S. R. Rao 《Biopolymers》1979,18(12):2993-3004
Conformational energies of α- and β-D -glucopyranoses were computed by varying all the ring bond angles and torsional angles using semiempirical potential functions. Solvent accessibility calculations were also performed to obtain a measure of solvent interaction. The results indicate that the 4C1 (D ) chair is the most favored conformation, both by potential energy and solvent accessibility criteria. The 4C1 (D ) chair conformation is also found to be somewhat flexible, being able to accommodate variations up to 10° in the ring torsional angles without appreciable change in energy. Observed solid-state conformations of these sugars and their derivatives lie in the minimum-energy region, suggesting that the substituents and crystal field forces play a minor role in influencing the pyranose ring conformation. Theory also predicts the variations in the ring torsional angles, i.e., CCCC < CCCO < CCOC, in agreement with the experimental results. The boat and twist-boat conformations are found to be at least 5 kcal mol?1 higher in energy compared to the 4C1 (D ) chair, suggesting that these forms are unlikely to be present in a polysaccharide chain. The 1C4 (D ) chair has energy intermediate between that of the 4C1 (D ) chair and that of the twist-boat conformation. The calculated energy barrier between 4C1 (D ) and 1C4 (D ) conformations is high—about 11 kcal mol?1.  相似文献   

17.
Comparative CD and Fourier transform ir (FTIR) spectroscopic data on N-Boc protected linear peptides with or without the (Pro-Gly) β-turn motif (e.g., Boc-Tyr-Pro-Gly-Phe-Leu-OH and Boc-Tyr-Gly-Pro-Phe-Leu-OH) are reported herein. The CD spectra, reflecting both backbone and aromatic contributions, were not found to be characteristic of the presence of β-turns. In the amide I region of the FTIR spectra, analyzed by self-deconvolution and curve-fitting methods, the β-turn band shewed up between 1639 and 1633 cm?1 in trifluoroethanol (TFE) but only for models containing the (Pro-Gly) core. This band war-also present in the spectra in chloroform but absent in dimethylsulfoxide. These findings, in agreement with recent ir data on cyclic models and 310-helical polypeptides and protein in D2O [see S. J. Prestrelski, D. M. Byler, and M. P. Thompson (1991), International Journal of Peptide and Protein Research, Vol. 37, pp. 508–512; H. H. Mantsch, A. Perczel. M. Hollósi, and G. D. Fasman (1992), FASEB Journal, Vol. 6, p. A341; H. H. Mantsch. A. Perczel, M. Hollósi, and G. Fasman (1992), Biopolymers. Vol. 33, pp. 201–207; S. M. Miick, G. V. Martinez, W. R. Fiori, A. P. Tedd, and G. L. Millhauser (1992). Nature, Vol. 359, pp. 653–655], suggest that the amide I band, with a major contribution from the acceptor C ? O of the 1 ← 4 intramolecular H bond of β-turns, appears near or below 1640 cm?1, rather than above 1660 cm?1. In TFE, bands between 1670 and 1660 cm?1 are mainly due to “free” carbonyls, that is, C ? O's of amides that are solvated but not involved in the characteristic H bonds of periodic secondary structures or β-turns. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
F. E. Karasz  G. E. Gajnos 《Biopolymers》1976,15(10):1939-1950
The coil-to-helix transition temperatures of hydrogen bearing and deuterated poly(γ-benzyl-L -glutamate) in 1,3-dichlorotetrafluoroacetone/H2O and/D2O mixtures, respectively, have been determined. Together with previously obtained data for the conformational transition of this polypeptide in normal and deuterated dichloroacetic acid, these results have been used in an analysis of the effect of deuterium substitution on the intrinsic stability of the α-helical form of poly(γ-benzyl-L -glutamate). The findings, consistent for both solvent systems, showed that the deuterated polypeptide is some 5% more stable than the normal protonated poly(γ-benzyl-L -glutamate), while the polypeptide-active solvent interaction enthalpy is also slightly increased by deuterium substitution in the respective molecules. A consideration of available data for poly(β-benzyl-L -aspartate) reveals an anomaly with respect to the present analysis.  相似文献   

20.
The present work describes three novel nonpolar host peptide sequences that provide a ready assessment of the 310- and α-helix compatibilities of natural and unnatural amino acids at different positions of small- to medium-size peptides. The unpolar peptides containing Ala, Aib, and a C-terminal p-iodoanilide group were designed in such a way that the peptides could be rapidly assembled in a modular fashion, were highly soluble in solvent mixtures of triflouroethanol and H2O for CD- and two-dimensional (2D) nmr spectroscopic analyses, and showed excellent crystallinity suited for x-ray structure analysis. To validate our approach we synthesized 9-mer peptides 79a–96 (Table IV), 12-mer peptides 99–110c (Table V), and 10-mer peptides 120a–125d and 129–133 (Table VI and Scheme 8) incorporating a series of optically pure cyclic and open-chain (R)- and (S)-α,α-disubstituted glycines 1–10 (Figure 2). These amino acids are known to significantly modulate the conformations of small peptides. Based on x-ray structures of 9-mers 79a, 80, and 87 (Figures 4–7), 10-mers 124c, 131, and 132 (Figures 9–12), and 12-mer peptide 102b (Figure 13), CD spectra of all peptides recorded in acidic, neutral, and basic media and detailed 2D-nmr analyses of 9-mer peptide 86 and 12-mer 102b, several interesting conformational observations were made. Especially interesting results were obtained using the convex constraint CD analysis proposed by Fasman on 9-mer peptides 79a–d, 80, 81, 86, and 87, which allowed us to determine the relative content of 310- and α-helical conformations. These results were fully supported by the corresponding x-ray and 2D-nmr analyses. As a striking example we found that the (S)- and (R)-β-tetralin derived amino acids (R)- and (S)-1 show excellent α-helix stabilisation, more pronounced than Aib and Ala. These novel reference peptide sequences should help establish a scale for natural and unnatural amino acids concerning their intrinsic 310- and α-helix compatibilities at different positions of medium-sized peptides and thus improve our understanding in the folding processes of peptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 575–626, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号