首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term studies of tree growth at elevated CO2 suggest that forest productivity may increase as atmospheric CO2 concentrations rise, although low soil N availability may limit the magnitude of this response. There have been few studies of growth and N2 fixation by symbiotic N2-fixing woody species under elevated CO2 and the N inputs these plants could provide to forest ecosystems in the future. We investigated the effect of twice ambient CO2 on growth, tissue N accretion, and N2 fixation of nodulated Alnus glutinosa (L.) Gaertn. grown under low soil N conditions for 160 d. Root, nodule, stem, and leaf dry weight (DW) and N accretion increased significantly in response to elevated CO2. Whole-plant biomass and N accretion increased 54% and 40%, respectively. Delta-15N analysis of leaf tissue indicated that plants from both treatments derived similar proportions of their total N from symbiotic fixation suggesting that elevated CO2 grown plants fixed approximately 40% more N than did ambient CO2 grown plants. Leaves from both CO2 treatments showed similar relative declines in leaf N content prior to autumnal leaf abscission, but total N in leaf litter increased 24% in elevated compared to ambient CO2 grown plants. These results suggest that with rising atmospheric CO2 N2-fixing woody species will accumulate greater amounts of biomass N through N2 fixation and may enhance soil N levels by increased litter N inputs.  相似文献   

2.
Summary We tested the prediction that plants grown in elevated CO2 environments are better able to compensate for biomass lost to herbivory than plants grown in ambient CO2 environments. The herbaceous perennial Plantago lanceolata (Plantaginaceae) was grown in either near ambient (380 ppm) or enriched (700 ppm) CO2 atmospheres, and then after 4 weeks, plants experienced either 1) no defoliation; 2) every fourth leaf removed by cutting; or 3) every other leaf removed by cutting. Plants were harvested at week 13 (9 weeks after simulated herbivory treatments). Vegetative and reproductive weights were compared, and seeds were counted, weighed, and germinated to assess viability.Plants grown in enriched CO2 environments had significantly greater shoot weights, leaf areas, and root weights, yet had significantly lower reproductive weights (i.e. stalks + spikes + seeds) and produced fewer seeds, than plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plant responses to enriched CO2 atmospheres: enriched CO2-grown plants only allocated 10% of their carbon resources to reproduction whereas ambient CO2-grown plants allocated over 20%. Effects of simulated herbivory on plant performance were much less dramatic than those induced by enriched CO2 atmospheres. Leaf area removal did not reduce shoot weights or reproductive weights of plants in either CO2 treatment relative to control plants. However, plants from both CO2 treatments experienced reductions in root weights with leaf area removal, indicating that plants compensated for lost above-ground tissues, and maintained comparable levels of reproductive output and seed viability, at the expense of root growth.  相似文献   

3.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

4.
Plant mineral nutrients such as phosphorus may exert major control on crop responses to the rising atmospheric carbon dioxide (CO2) concentrations. To evaluate the growth, nutrient dynamics, and efficiency responses to CO2 and phosphorus nutrition, soybean (Glycine max (L.) Merr.) was grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) phosphate (Pi) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 µmol mol?1, respectively). The CO2 × Pi interaction was detected for leaf area, leaf and stem dry weight, and total plant biomass. The severe decrease in plant biomass in Pi-deficient plants (10–76%) was associated with reduced leaf area and photosynthesis (Pnet). The degree of growth stimulation (0–55% total biomass) by eCO2 was dependent upon the severity of Pi deficiency and was closely associated with the increased phosphorus utilization efficiency. With the exception of leaf and root biomass, Pi deficiency decreased the biomass partitioning to other plant organs with the maximum decrease observed in seed weight (8–42%) across CO2 levels. The increased tissue nitrogen (N) concentration in Pi-deficient plants was accredited to the lower biomass and increased nutrient uptake due to the larger root to shoot ratio. The tissue P and N concentration tended to be lower at eCO2 versus aCO2 and did not appear to be the main cause of the lack of CO2 response of growth and Pnet under severe Pi deficiency. The leaf N/P ratio of >16 was detrimental to soybean growth. The tissue P concentration needed to attain the maximum productivity for biomass and seed yield tended to be higher at eCO2 versus aCO2. Therefore, the eCO2 is likely to increase the leaf critical P concentration for maximum biomass productivity and yield in soybean.  相似文献   

5.
An important question with respect to plant performance in future climatic scenarios is whether the offspring of mature trees that have experienced lifelong exposure to elevated [CO2] show altered physiological responses to elevated [CO2] compared with those originating from current ambient CO2 concentrations. To investigate this question, acorns were collected from two seed sources, denoted as ‘control’ and ‘spring’, from Quercus ilex mother trees grown at ambient (36 Pa) and at about twice ambient CO2 concentrations, respectively, close to a natural CO2 spring, Laiatico, central Italy. The seedlings were raised for 8 months under controlled conditions at ambient and elevated [CO2] in a reciprocal experimental design and were used for the determination of biomass, photosynthesis and foliar carbohydrate concentrations, as well as the accumulation of structural biomass and lignin during leaf maturation. Under ambient [CO2], biomass and foliar carbon acquisition in control progeny were not significantly different from spring progeny. However, under elevated [CO2], spring seedlings showed less CO2 acclimation than control seedlings but no significant differences in non‐structural carbohydrate concentrations and structural biomass per unit leaf dry mass. Developmental lignin accumulation in leaves was delayed under elevated [CO2] compared with ambient [CO2], but only in control progeny. Under elevated [CO2], whole‐plant biomass, leaf area and stem diameter were significantly increased in Quercus ilex seedlings from both seed sources but with a higher stimulation of above‐ground biomass in spring than in control seedlings and a higher stimulation of below‐ground biomass in control seedlings. These results indicate that life history and/or progeny may determine the species‐specific CO2 response and suggest that positive CO2 acclimation is possible.  相似文献   

6.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

7.
J. He  L. Qin  S. K. Lee 《Photosynthetica》2013,51(3):330-340
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3 ?), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24–38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3 ? and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins.  相似文献   

8.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

9.
Forest trees are major components of the terrestrial biome and their response to rising atmospheric CO2 plays a prominent role in the global carbon cycle. In this study, loblolly pine seedlings were planted in the field in recently disturbed soil of high fertility, and CO2 partial pressures were maintained at ambient CO2 (Amb) and elevated CO2 (Amb + 30 Pa) for 4 years. The objective of the study was to measure seasonal and long-term responses in growth and photosynthesis of loblolly pine exposed to elevated CO2 under ambient field conditions of precipitation, light, temperature and nutrient availability. Loblolly pine trees grown in elevated CO2 produced 90% more biomass after four growing seasons than did trees grown in ambient CO2. This large increase in final biomass was primarily due to a 217% increase in leaf area in the first growing season which resulted in much higher relative growth rates for trees grown in elevated CO2. Although there was not a sustained effect of elevated CO2 on relative growth rate after the first growing season, absolute production of biomass continued to increase each year in trees grown in elevated CO2 as a consequence of the compound interest effect of increased leaf area on the production of more new leaf area and more biomass. Allometric analyses of biomass allocation patterns demonstrated size-dependent shifts in allocation, but no direct effects of elevated CO2 on partitioning of biomass. Leaf photosynthetic rates were always higher in trees grown in elevated CO2, but these differences were greater in the summer (60–130% increase) than in the winter (14–44% increase), reflecting strong seasonal effects of temperature on photosynthesis. Our results suggest that seasonal variation in the relative photosynthetic response to elevated CO2 will occur in natural ecosystems, but total non-structural carbohydrate (TNC) levels in leaves indicate that this variation may not always be related to sink activity. Despite indications of canopy-level adjustments in carbon assimilation, enhanced levels of leaf photosynthesis coupled with increased total leaf area indicate that net carbon assimilation for the whole tree was greater for trees grown under elevated CO2 compared with ambient CO2. If the large growth enhancement observed in loblolly pine were maintained after canopy closure, then these trees could be a large sink for fossil carbon emitted to the atmosphere and produce a negative feedback on atmospheric CO2.  相似文献   

10.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.  相似文献   

11.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   

12.
Although leaf photosynthesis and plant growth are initially stimulated by elevated CO2 concentrations, increasing insensitivity to CO2 (acclimation) is a frequent occurrence. In order to examine the acclimation process, we studied photosynthesis and whole plant development in swiss chard (Beta vulgaris L. Koch ssp. ciela) and sugarbeet (Beta vulgaris L. ssp. vulgaris) grown at either ambient or twice ambient concentrations of CO2. In an initial controlled environment study, photosynthetic acclimation to elevated CO2 levels was observed in both subspecies 24 days after sowing (DAS) but was not observed at 42 and 49 DAS for sugarbeet or at 49 DAS for swiss chard. Although sugarbeet and swiss chard differed in root size and morphology, this was not a factor in the onset of photosynthetic acclimation. The reversal of photosynthetic acclimation that was observed in older plants grown at elevated CO2, concentrations was associated with a rapid increase in root development (i.e. increased root: shoot [R/S] ratio), increased sucrose levels in sinks (roots) and no differences in total soluble leaf protein of either subspecies relative to the ambient CO2 condition. In a second set of experiments, swiss chard and sugarbeet were grown in outdoor Plexiglass chambers at different times of the year (i.e. summer and early fall). Average 24-h temperature was 30.7 and 19.4°C for the summer and fall plantings, respectively. In agreement with the controlled environment study, lack of photosynthetic acclimation, determined from the response of photosynthesic rate to internal CO2 concentration, was correlated with increased root biomass and sucrose concentration relative to the ambient condition. However, photo-synthetic acclimation was observed depending on the season, i.e. summer (swiss chard) or fall (sugarbeet), suggesting that acclimation was affected by environmental factors, such as temperature. Data from both experiments suggest that continued long-term photosynthetic stimulation may be dependent upon the ability of increased CO2 to stimulate new sink development which would allow full utilization of the additional carbon made available in a high CO2 environment.  相似文献   

13.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

14.
Springs emitting carbon dioxide are frequent in Central Italy and provide a way of testing the response of plants to CO2 enrichment under natural conditions. Results of a CO2 enrichment experiment on soybean at a CO2 spring (Solfatara) are presented. The experimental site is characterized by significant anomalies in atmospheric CO2 concentration produced by a large number of vents emitting almost pure CO2 (93%) plus small amounts of hydrogen sulphide, methane, nitrogen and oxygen. Within the gas vent area, plants were grown at three sub-areas whose mean CO2 concentrations during daytime were 350,652 and 2370 μmol mol-1, respectively. Weekly harvests were made to measure biomass growth, leaf area and ontogenetic development. Biomass growth rate and seed yield were enhanced by elevated CO2. In particular, onto-morphogenetic development was affected by elevated CO2 with high levels of CO2 increasing the total number of main stem leaf nodes and the area of the main stem trifoliolate leaves. Biochemical analysis of plant tissue suggested that there was no effect of the small amounts of H2S on the response to CO2 enrichment. Non-protein sulphydryl compounds did not accumulate in leaf tissues and the overall capacity of leaf extracts to oxidize exogenously added NADH was not decreased. The limitations and advantages of experimenting with crop plants at elevated CO2 in the open and in the proximity of carbon dioxide springs are discussed.  相似文献   

15.
Quantitative integration of the literature on the effect of elevated CO2 on woody plants is important to aid our understanding of forest health in coming decades and to better predict terrestrial feedbacks on the global carbon cycle. We used meta-analytic methods to summarize and interpret more than 500 reports of effects of elevated CO2 on woody plant biomass accumulation and partitioning, gas exchange, and leaf nitrogen and starch content. The CO2 effect size metric we used was the log-transformed ratio of elevated compared to ambient response means weighted by the inverse of the variance of the log ratio. Variation in effect size among studies was partitioned according to the presence of interacting stress factors, length of CO2 exposure, functional group status, pot size, and type of CO2 exposure facility. Both total biomass (W T) and net CO2 assimilation (A) increased significantly at about twice ambient CO2, regardless of growth conditions. Low soil nutrient availability reduced the CO2 stimulation of W T by half, from +31% under optimal conditions to +16%, while low light increased the response to +52%. We found no significant shifts in biomass allocation under high CO2. Interacting stress factors had no effect on the magnitude of responses of A to CO2, although plants grown in growth chambers had significantly lower responses (+19%) than those grown in greenhouses or in open-top chambers (+54%). We found no consistent evidence for photosynthetic acclimation to CO2 enrichment except in trees grown in pots <0.5 l (−36%) and no significant CO2 effect on stomatal conductance. Both leaf dark respiration and leaf nitrogen were significantly reduced under elevated CO2 (−18% and −16% respectively, data expressed on a leaf mass basis), while leaf starch content increased significantly except in low nutrient grown gymnosperms. Our results provide robust, statistically defensible estimates of elevated CO2 effect sizes against which new results may be compared or for use in forest and climate model parameterization. Received: 16 May 1997 / Accepted: 9 September 1997  相似文献   

16.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

17.
Atmospheric CO2 enrichment can affect plants directly via impacts on their performance, and indirectly, by environment‐specific traits passed down from the mother plant to the offspring. Such maternal effects can significantly alter plant species composition, especially in annual ecosystems where the entire community is recruited from seeds each year. This study assessed impacts of future, high CO2 (440 and 600 ppm) and pre‐industrial, low CO2 (280 ppm) on seed traits and offspring performance in three plant functional groups (grasses, legumes, forbs) comprising 17 annual species of a semi‐arid Mediterranean community. In grasses, seed size and seed‐reserve utilization as expressed by root elongation tended to be higher at high than at low maternal CO2, but total seed protein concentration and protein pool decreased with increasing maternal CO2. The response of seed size to high CO2 increased with increasing leaf‐mass fraction in grasses, and decreased with decreasing concentration of leaf non‐structural carbohydrates in legumes. Offspring development was studied at ambient CO2, and showed reduced emergence success of high‐CO2 progeny compared with low‐CO2 progeny in forbs. Total biomass was lower in high‐CO2 than in low‐CO2 offspring across all functional groups. The biomass response to high maternal CO2 in legume offspring correlated inversely with seed size, resulting in up to 25% lower biomass in large‐seeded species. Under the scenario of maternal effects combined with projected changes in biomass and seed production under direct exposure to high CO2, legumes might gain and forbs and grasses might lose from future CO2 enrichment. Most changes in seed traits and offspring performance were greater between pre‐industrial and near‐future CO2 than between near‐ and remote‐future CO2 concentrations. Hence, maternal effects of increasing CO2 may contribute to current changes in plant productivity and species composition, and they need to be considered when predicting impacts of global change on plant communities.  相似文献   

18.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

19.
Few studies have investigated the effects of elevated CO2 on the physiology of symbiotic N2-fixing trees. Tree species grown in low N soils at elevated CO2 generally show a decline in photosynthetic capacity over time relative to ambient CO2 controls. This negative adjustment may be due to a reallocation of leaf N away from the photosynthetic apparatus, allowing for more efficient use of limiting N. We investigated the effect of twice ambient CO2 on net CO2 assimilation (A), photosynthetic capacity, leaf dark respiration, and leaf N content of N2-fixing Alnus glutinosa (black alder) grown in field open top chambers in a low N soil for 160 d. At growth CO2, A was always greater in elevated compared to ambient CO2 plants. Late season A vs. internal leaf p(CO2) response curves indicated no negative adjustment of photosynthesis in elevated CO2 plants. Rather, elevated CO2 plants had 16% greater maximum rate of CO2 fixation by Rubisco. Leaf dark respiration was greater at elevated CO2 on an area basis, but unaffected by CO2 on a mass or N basis. In elevated CO2 plants, leaf N content (μg N cm?2) increased 50% between Julian Date 208 and 264. Leaf N content showed little seasonal change in ambient CO2 plants. A single point acetylene reduction assay of detached, nodulated root segments indicated a 46% increase in specific nitrogenase activity in elevated compared to ambient CO2 plants. Our results suggest that N2-fixing trees will be able to maintain high A with minimal negative adjustment of photosynthetic capacity following prolonged exposure to elevated CO2 on N-poor soils.  相似文献   

20.
The influence of mycorrhizal symbiosis, atmospheric CO2 concentration and the interaction between both factors on biomass production and partitioning were assessed in nodulated alfalfa (Medicago sativa L.) associated or not with arbuscular mycorrhizal fungi (AMF) and grown in greenhouse at either ambient (392 μmol?mol?1) or elevated (700 μmol?mol?1) CO2 air concentrations. Measurements were performed at three stages of the vegetative period of plants. Shoot and root biomass achieved by plants at the end of their vegetative period were highly correlated to the photosynthetic rates reached at earlier stages, and there was a significant relationship between CO2 exchange rates and total nodule biomass per plant. In non-mycorrhizal alfalfa, the production of leaves, stems and nodules biomass significantly increased when plants had been exposed to elevated CO2 concentration in the atmosphere for 4 weeks. Regardless CO2 concentration at which alfalfa were cultivated, mycorrhizal symbiosis improved photosynthetic rates and growth of alfalfa at early stages of the vegetative period and then photosynthesis decreased, which suggests that AMF shortened the vegetative period of the host plants. At final stages of the vegetative period, AMF enhanced both area and biomass of leaves as well as the leaves to stems ratio when alfalfa plants were cultivated at ambient CO2. The interaction of AMF with elevated CO2 improved root biomass and slightly increased the leaves to stems ratio at the end of the vegetative growth. Therefore, AMF may favor both the forage quality of alfalfa when grown at ambient CO2 and its perennity for next cutting regrowth cycle when grown under elevated CO2. Nevertheless, this hypothesis needs to be checked under natural conditions in field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号