首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 776 毫秒
1.
A nuclear integration of a mitochondrial control region sequence on human chromosome 9 has been isolated. PCR analyses with primers specific for the respective insertion-flanking nuclear regions showed that the insertion took place on the lineage leading to Hominoidea (gibbon, orangutan, gorilla, chimpanzee, and human) after the Old World monkey-Hominoidea split. The sequences of the control region integrations were determined for humans, chimpanzees, gorillas, orangutans, and siamangs. These sequences were then used to construct phylogenetic trees with different methods, relating them with several hominoid, Old Work monkey, and New World monkey mitochondrial control region sequences. Applying maximum-likelihood, neighbor-joining, and parsimony algorithms, the insertion clade was attached to the branch leading to the hominoid mitochondrial sequences as expected from the PCR-determined presence/absence of this integration. An unexpected long branch leading to the internal node that connects all insertion sequences was observed for the different phylogeny reconstruction procedures. This finding is not totally compatible with the lower evolutionary rate in the nucleus than in the mitochondrial compartment. We determined the unambiguous substitutions on the branch leading to the most recent common ancestor (MRCA) of the mitochondrial inserts according to the parsimony criterium. We propose that they are unlikely to have been caused by damage of the transposing nucleic acid and that they are probably due to a change in the evolutionary mode after the transposition.   相似文献   

2.
Consensus on the evolutionary relationships of humans, chimpanzees, and gorillas has not been reached, despite the existence of a number of DNA sequence data sets relating to the phylogeny, partly because not all gene trees from these data sets agree. However, given the well-known phenomenon of gene tree-species tree mismatch, agreement among gene trees is not expected. A majority of gene trees from available DNA sequence data support one hypothesis, but is this evidence sufficient for statistical confidence in the majority hypothesis? All available DNA sequence data sets showing phylogenetic resolution among the hominoids are grouped according to genetic linkage of their corresponding genes to form independent data sets. Of the 14 independent data sets defined in this way, 11 support a human- chimpanzee clade, 2 support a chimpanzee-gorilla clade, and one supports a human-gorilla clade. The hypothesis of a trichotomous speciation event leading to Homo; Pan, and Gorilla can be firmly rejected on the basis of this data set distribution. The multiple-locus test (Wu 1991), which evaluates hypotheses using gene tree-species tree mismatch probabilities in a likelihood ratio test, favors the phylogeny with a Homo-Pan clade and rejects the other alternatives with a P value of 0.002. When the probabilities are modified to reflect effective population size differences among different types of genetic loci, the observed data set distribution is even more likely under the Homo-Pan clade hypothesis. Maximum-likelihood estimates for the time between successive hominoid divergences are in the range of 300,000-2,800,000 years, based on a reasonable range of estimates for long-term hominoid effective population size and for generation time. The implication of the multiple-locus test is that existing DNA sequence data sets provide overwhelming and sufficient support for a human-chimpanzee clade: no additional DNA data sets need to be generated for the purpose of estimating hominoid phylogeny. Because DNA hybridization evidence (Caccone and Powell 1989) also supports a Homo-Pan clade, the problem of hominoid phylogeny can be confidently considered solved.   相似文献   

3.
We describe sequence variation in the mitochondrial control region and its nuclear homolog in three species and seven subspecies of guillemots (Cepphus spp.). Nuclear homologs of the 5' end of the control region were found in all individuals. Nuclear sequences were approximately 50% divergent from their mitochondrial counterparts and formed a distinct phylogenetic clade; the mitochondrial-nuclear introgression event must have predated the radiation of Cepphus. As in other vertebrates, the guillemot control region has a relatively conserved central block flanked by hypervariable 5' and 3' ends. Mean pairwise interspecific divergence values among control regions were lower than those in other birds. All individuals were heteroplasmic for the number of simple tandem nucleotide repeats (A(n)C) at the 3' end of the control region. Phylogenetic analyses suggest that black guillemots are basal to pigeon and spectacled guillemots, but evolutionary relationships among subspecies remain unresolved, possibly due to incomplete lineage sorting. Describing molecular variation in nuclear homologs of mitochondrial genes is of general interest in phylogenetics because, if undetected, the homologs may confound interpretations of mitochondrial phylogenies.   相似文献   

4.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

5.
Phylogenetic relationships among the nine spiral-horn antelope species of the African bovid tribe Tragelaphini are controversial. In particular, mitochondrial DNA sequencing studies are not congruent with previous morphological investigations. To test the utility of nuclear DNA intron markers at lower taxonomic levels and to provide additional data pertinent to tragelaphid evolution, we sequenced four nuclear DNA segments (MGF, PRKCI, SPTBN, and THY) and combined these data with mitochondrial DNA sequences from three genes (cytochrome b, 12S rRNA, and 16S rRNA). Our molecular supermatrix comprised 4682 characters which were analyzed independently and in combination. Parsimony and model based phylogenetic analyses of the combined nuclear DNA data are congruent with those derived from the analysis of mitochondrial gene sequences. The corroboration between nuclear and mtDNA gene trees reject the possibility that genetic processes such as lineage sorting, gene duplication/deletion and hybrid speciation account for the conflict evident in the previously published phylogenies. It suggests rather that the morphological characters used to delimit the Tragelaphid species are subject to convergent evolution. Divergence times among species, calculated using a relaxed Bayesian molecular clock, are consistent with hypotheses proposing that climatic oscillations and their impact on habitats were the major forces driving speciation in the tribe Tragelaphini.  相似文献   

6.
Nucleotide sequences of a part of the stromal cell-derived factor-1 (SDF-1) gene 3' untranslated region were studied among hominoids (chimpanzees, gorillas, orangutans and gibbons). An identical sequence to the human SDF1-3'G allele was found in chimpanzees and gibbons, whereas that to the 3'A allele was found in gorillas. Based on the sequence data and the hominoid phylogenetic relation, it was suggested that an adenine nucleotide at nucleotide position (np) 801 in humans and gorillas was independently introduced into each lineage after the specific divergence and an ancestral hominoid sequence of this site (np 799-802) was deduced as CCGG. The present data showing a mutational hot spot on this site suggest the possible presence of multiple origins of the worldwide distribution of the SDF1-3'A allele in humans.  相似文献   

7.
Sibley and Ahlquist compared the single-copy nuclear DNA sequences of the hominoid primates using DNA-DNA hybridization. From this data set they estimated a phylogeny that clusters man and chimpanzees using a distance Wagner procedure. However, no assessment of statistical confidence in this estimated phylogeny was made, despite the fact that their data set contains internal inconsistencies concerning the correct branching order. This paper presents a modification of Pielou's Q- statistic that allows one to make nonparametric tests of phylogenetic relationship from distance data. The results of this analysis indicate that the estimated phylogeny of Sibley and Ahlquist is without statistical significance owing to the internal inconsistencies of the data set. A survey and additional analyses of other types of molecular data indicate that the phylogeny that clusters chimpanzees and gorillas and has the human lineage splitting off earlier is statistically consistent with all the molecular data (including the DNA-DNA hybridization data), whereas the phylogeny estimated by Sibley and Ahlquist can be rejected at the 5% level using the data on restriction- endonuclease sites in the mitochondrial genome.   相似文献   

8.
Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.   总被引:6,自引:0,他引:6  
The evolution of the Old World monkey tribe Papionini, composed of macaques, baboons, mandrills, drills, and mangabeys, was examined using mitochondrial DNA (mtDNA) sequence data on the cytochrome oxidase subunit II gene. When analyzed cladistically, these data support a baboon clade of savannah (Papio) plus gelada (Theropithecus) baboons, as well as a clade containing drill (Mandrillus) plus mangabey (Cerocebus) genera. This result stands in opposition to most morphological phylogenies, which break up the baboon clade by placing Papio and Mandrillus as sister taxa and Theropithecus as a more distantly related lineage. Analyses of COII gene sequences also suggest that the papionin ancestral stock divided into two lineages, one leading to macaques and the other to the purely African genera. From a molecular evolutionary perspective, the papionin COII gene sequences reveal a pattern of amino acid replacements concentrated in the regions spanning the mitochondrial membrane.  相似文献   

9.
The complete mitochondrial genome sequence of Accipiter virgatus was determined. This mt-genome was 17,952 bp in length and consisted of 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes, one control region (CR) and one pseudo-control region (CCR). Phylogenetic analyses of 14,644 bp of mitochondrial DNA (12 protein-coding genes, 2 rRNAs and 22 tRNAs) revealed the phylogenetic position of Cathartidae (Cathartes aura) was more closer to Ciconiidae (storks) than Accipitridae. To investigate the divergence times of the CCRs in Falconiformes, detailed analyses of the noncoding regions (CR and CCR) were performed. We found the recently reported novel gene order in Falconiformes had multiple independent origins and hence cannot be used to infer phylogenetic lineages. Indeed, the molecular clock suggested the CCR in Falconidae emerged about 65.4 million years (Mya), while that in Pandionidae–Accipitridae clade emerged about 19.16 Mya. The intra-genomic homology between the noncoding regions was detected in Spilornis cheela, which supporting the duplication hypothesis. Furthermore, the structure of CCR should be featured by a region containing tandem repeats as two definitely separated clusters of tandem repeats were found. The findings presented here should be considered in future phylogenetic and evolutionary studies targeting the pseudo-control regions of all Falconiformes species.  相似文献   

10.
Great ape systematics, particularly at the species level and below, is currently under debate, due in part to the recent influx of molecular data. The phylogenies of previously published mitochondrial control region (or D-loop) DNA sequences in gorillas show deep splits within West African gorillas (Gorilla gorilla gorilla), and very high levels of nucleotide diversity in this subspecies. Here we demonstrate that several previously reported D-loop haplotypes from West African gorillas are in all likelihood nuclear integrations of mitochondrial DNA. Revised estimates of the amount and pattern of mitochondrial DNA diversity in gorillas are provided, revealing two reciprocally monophyletic and highly divergent groups of gorillas, concurrent with their geographic distribution.  相似文献   

11.
The evolutionary history of humans comprises an important but small branch on the larger tree of ape evolution. Today’s hominoids—gibbons, orangutans, gorillas, chimpanzees, and humans—are a meager representation of the ape diversity that characterized the Old World from 23–5 million years ago. In this paper, I briefly review this evolutionary history focusing on features important for understanding modern ape and human origins. As the full complexity of ape evolution is beyond this review, I characterize major geographic, temporal, and phylogenetic groups using a few flagship taxa. Improving our knowledge of hominoid evolution both complicates and clarifies studies of human origins. On one hand, features thought to be unique to the human lineage find parallels in some fossil ape species, reducing their usefulness for identifying fossil humans. On the other hand, the Miocene record of fossil apes provides an important source for generating hypotheses about the ancestral human condition; this is particularly true given the dearth of fossils representing our closest living relatives: chimpanzees and gorillas.  相似文献   

12.
Variation in vertebral formulae within and among hominoid species has complicated our understanding of hominoid vertebral evolution. Here, variation is quantified using diversity and similarity indices derived from population genetics. These indices allow for testing models of hominoid vertebral evolution that call for disparate amounts of homoplasy, and by inference, different patterns of evolution. Results are interpreted in light of "short-backed" (J Exp Zool (Mol Dev Evol) 302B:241-267) and "long-backed" (J Exp Zool (Mol Dev Evol) 314B:123-134) ancestries proposed in different models of hominin vertebral evolution. Under the long-back model, we should expect reduced variation in vertebral formulae associated with adaptively driven homoplasy (independently and repeatedly reduced lumbar regions) and the relatively strong directional selection presumably associated with it, especially in closely related taxa that diverged relatively recently (e.g., Pan troglodytes and Pan paniscus). Instead, high amounts of intraspecific variation are observed among all hominoids except humans and eastern gorillas, taxa that have likely experienced strong stabilizing selection on vertebral formulae associated with locomotor and habitat specializations. Furthermore, analyses of interspecific similarity support an evolutionary scenario in which the vertebral formulae observed in western gorillas and chimpanzees represent a reasonable approximation of the ancestral condition for great apes and humans, from which eastern gorillas, humans, and bonobos derived their unique vertebral profiles. Therefore, these results support the short-back model and are compatible with a scenario of homology of reduced lumbar regions in hominoid primates. Fossil hominin vertebral columns are discussed and shown to support, rather than contradict, the short-back model.  相似文献   

13.
By amplification and sequencing of RH gene intron 4 of various primates we demonstrate that an Alu-Sx-like element has been inserted in the RH gene of the common ancestor of humans, apes, Old World monkeys, and New World monkeys. The study of mouse and lemur intron 4 sequences allowed us to precisely define the insertion point of the Alu-Sx element in intron 4 of the RH gene ancestor common to Anthropoidea. Like humans, chimpanzees and gorillas possess two types of RH intron 4, characterized by the presence (human RHCE and ape RHCE-like genes) or absence (human RHD and ape RHD-like genes) of the Alu-Sx element. This led us to conclude that in the RH common ancestor of humans, chimpanzees, and gorillas, a duplication of the common ancestor gene gave rise to two genes, one differing from the other by a 654-bp deletion encompassing an Alu-Sx element. Moreover, most of chimpanzees and some gorillas posses two types of RHD-like intron 4. The introns 4 of type 1 have a length similar to that of human RHD intron 4, whereas introns 4 of type 2 display an insertion of 12 bp. The latest insertion was not found in the human genome (72 individuals tested). The study of RH intron 3 length polymorphism confirmed that, like humans, chimpanzees and gorillas possess two types of intron 3, with the RHD-type intron 3 being 289 bases shorter than the RHCE intron 3. By amplification and sequencing of regions encompassing introns 3 and 4, we demonstrated that chimpanzee and gorilla RH-like genes displayed associations of introns 3 and 4 distinct to those found in man. Altogether, the results demonstrate that, as in humans, chimpanzee and gorilla RH genes experienced intergenic exchanges.  相似文献   

14.
A major challenge for understanding the evolutionary genetics of mass-spawning corals is to explain the maintenance of discrete morphospecies in view of high rates of interspecific fertilization in vitro and nonmonophyletic patterns in molecular phylogenies. In this study, we focused on Acropora cytherea and A. hyacinthus, which have one of the highest potentials for interspecific fertilization. Using sequences of a nuclear intron, we performed phylogenetic and nested clade analyses (NCA). Both species were polyphyletic in molecular phylogenies, but the NCA indicated that they constitute statistically distinguishable lineages. Phylogenetic analysis using an intergenic region of the mitochondrial DNA (mtDNA), was inconclusive because of low levels of variability in this marker. The position of these two species differed between the nuclear DNA (nDNA) and mtDNA phylogenies and was also at odds with a cladistic analysis based on morphology. We conclude that despite the potential for high levels of hybridization and introgression, A. cytherea and A. hyacinthus constitute statistically distinguishable lineages and their taxonomic status is consistent with the cohesion species concept.  相似文献   

15.
Species-level DNA phylogenies frequently suffer from two shortcomings--gene trees usually are constructed from a single locus, and often species are represented by only one individual. To evaluate the effect of these two shortcomings, we tested phylogenetic hypotheses within the wigeons and allies, a clade of Anas ducks (Anatidae) composed of five species. We sequenced two nuclear introns from the Z-chromosome-linked chromo-helicase binding protein gene (CHD1Zb and CHD1Za) and the mitochondrial DNA (mtDNA) control region for multiple individuals sampled from widespread geographic locations. We compared these phylogenies to previously published phylogenies constructed from morphology and protein coding regions of mtDNA. Relative to other nuclear introns, CHD showed remarkable phylogenetic utility. Of the 26 CHD1Zb alleles identified, only one was shared between two species, and the combined CHD datasets revealed that four of the five species were consistent with monophyly. Several species shared mtDNA haplotypes, which probably was a result of interspecific hybridization. Overall, the nuclear CHD tree and the mtDNA tree were more congruent with coding regions of mtDNA than they were with morphology.  相似文献   

16.
Wasps of the braconid subfamily Aphidiinae are solitary endoparasitoids of aphids. Several aspects of their biology have been the focus of intuitive evolutionary hypotheses which could be tested with a robust phylogeny. Phylogenetic hypotheses have been proposed previously for aphidiines based on morphology, embryology, and DNA sequences. However, many of them are based on a limited number of characters and/or taxa and lack congruence. In addition, many of the inferred phylogenies have not been based upon cladistic analysis. Therefore, a phylogenetic study of Aphidiinae was undertaken, utilizing 465 bp of DNA sequence of the mitochondrial NADH1 dehydrogenase gene. DNA sequences were obtained from 40 taxa, including 14 genera and three outgroups. It is suggested that in agreement with most of the previously proposed phylogenies, the aphidiines, each of the three recognized tribes (Praini, Ephedrini, Aphidiini), and most genera are monophyletic. In contrast to previously proposed phylogenies, the clade of Praon + Dyscritulus (=Praini), rather than Ephedrini, is basal among the aphidiines.  相似文献   

17.
Recent studies on molecular evolution using nucleotide sequence data to clarify phylogenetic relationships among humans and the African great apes, have revealed that humans are more closely related to chimpanzees than to gorillas. However, the genetic basis of human uniqueness remains unclear. This is because phylogenetic studies have merely evaluated the degree of similarity by calculating the accumulation of nucleotide substitutions that have occurred in neutral DNA regions commonly present in all the species examined. In contrast, the genome subtraction method recently developed by us has revealed dissimilarity even among the genomes of the most closely related species. Here we describe the characteristics of the DNA sequences obtained by genome subtraction between humans and chimpanzees.  相似文献   

18.
Using "long-PCR," we amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900-nt sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large noncoding regions, one of which contains 13 repeats of a 31-nt sequence and a potential stem-loop structure of 25 bp with an 11-member loop. Large potential secondary structures were identified also for the noncoding regions of two other cestode mtDNAS: Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than placing them basal to either a clade of protostomes or a clade of coelomates.  相似文献   

19.
Insertions and deletions are responsible for gaps in aligned nucleotide sequences, but they have been usually ignored when the number of nucleotide substitutions was estimated. We compared six sets of nuclear and mitochondrial noncoding DNA sequences of primates and obtained the estimates of the evolutionary rate of insertion and deletion. The maximum-parsimony principle was applied to locate insertions and deletions on a given phylogenetic tree. Deletions were about twice as frequent as insertions for nuclear DNA, and single-nucleotide insertions and deletions were the most frequent in all events. The rate of insertion and deletion was found to be rather constant among branches of the phylogenetic tree, and the rate (approximately 2.0/kb/Myr) for mitochondrial DNA was found to be much higher than that (approximately 0.2/kb/Myr) for nuclear DNA. The rates of nucleotide substitution were about 10 times higher than the rate of insertion and deletion for both nuclear and mitochondrial DNA.   相似文献   

20.
The evolution of the anthropoid involucrin gene has resulted largely from a process of vectorial addition of short tandem repeats. The coding region of the involucrin gene of the gibbon (Hylobates lar), including the segment of repeats, has been cloned and sequenced, and its repeat structure can now be compared with that of the other hominoids. In the gibbon, as in the others, repeat additions in the past can be assigned to early, middle, and late regions of the present-day segment of repeats. All 10 repeats of the gibbon early region were completed in a common anthropoid ancestor. All 17 repeats of the gibbon middle region were completed in a common hominoid ancestor. After divergence of the gibbon lineage, eight repeats were added to the middle region of the great ape-human lineages. Seven of these are shared by two to four species, according to the order of their divergences from each other. After its divergence, the gibbon lineage added a short species-specific late region. The gibbon also possesses an incomplete repeat just 3' of the early region, the only addition in this region in any hominoid. Comparison of the number of repeats added with the number of nucleotides substituted shows an inconstant relation between the two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号