首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
B. Erschbamer  U. Buratti  J. Winkler 《Oecologia》1998,115(1-2):114-119
The demography of two closely related alpine sedges, Carex curvula subsp. curvula and Carex curvula subsp. rosae (=C. curvula and C. rosae) has been investigated on their typical sites in the Central Alps. Both species proliferate vegetatively and develop dense tussocks but they show different dominance behaviours in their respective grasslands. It was hypothesized that this may be caused by different growth abilities. The main aim of the study was to compare the vegetative growth of the species under field conditions, under competition-free conditions and under changed soil conditions. An attempt was also made to clarify whether vegetative growth is density dependent. Permanent plots were established in the respective grasslands of the two species and the ramet density was counted over 3 years. Groups of 10 and of 30 ramets of each species were grown in pots with typical and with alien substrate and their growth was observed for 5 years at the field site. The grassland populations of both species were very stable and the overall ramet growth rate (λ) was close to 1.0. Within the pots, both species reached a high ramet number. Only the group of 30 ramets of C. curvula on alien soil could not recover from the transplantation shock. Within the pots, C. rosae showed a greater ramet turnover and a higher increase in ramets than C. curvula. On their native substrate, both species had a significantly higher ramet increase than on the alien substrate. Ramet growth was found to be density dependent for both species, the increases recorded for the groups of 10 being significantly greater than for the groups of 30. Although C. curvula produced fewer ramets than C. rosae, the aboveground dry weight of the former was significantly higher. This may be decisive for its greater competitive success in closed grasslands. Received: 12 April 1997 / Accepted: 12 December 1997  相似文献   

2.
Abstract. Carex curvula is a dominant sedge of European alpine tundra, exhibiting two morphological forms: C. curvula ssp. curvula (Ccc) and C. curvula ssp. rosae (Ccr). In this paper, we attempt to explore whether Ccc and Ccr are ecotypes or vicariant forms and whether between‐ and within‐regional distribution patterns can be explained by variations in the amount of available habitats and/or by changes in niche attributes. The study area covered three bioclimatically distinct regions of the southwestern Alps in which local abundances of Ccc and Ccr strongly differ. The realized niche of both forms was investigated by a direct gradient analysis performed on an extensive floristic and environmental data set. We found no evidence of niche overlap between Ccc and Ccr as their distribution curves differ strongly along disturbance, mesotopography and soil acidity gradients. We investigated the effect of region on the structure of local scale variables tables. Highly concordant patterns among regions were found, except that optimal habitat conditions for Ccc were infrequent in the southernmost regions. We compared the ecological behaviour of range centre and range margin populations of each form. We found a narrower ecological amplitude for Ccr in the northern part of its range, whereas for Ccc the niche breadth of range‐margin populations was not reduced compared to range centre populations. At its southern range limit, Ccc mostly occupies ecologically marginal habitats. We conclude that Ccc and Ccr represent ecotypes, not vicariant forms. Finally, we suggest that habitat availability, resulting from the interplay of regional‐scale and local‐scale variables, satisfactorily explains the distributional patterns of Carex curvula ecotypes in the southwestern Alps.  相似文献   

3.
Abstract The success of revegetation efforts in southwestern U.S. riparian meadows has been limited because natural recolonization is often poor and little is known about establishment of transplanted native meadow species such as sedges. To evaluate their potential use in riparian restoration, the survival and growth of transplanted wildlings of three sedge species, Carex lanuginosa (woolly sedge), C. nebrascensis (Nebraska sedge), and C. rostrata (beaked sedge), were assessed. Transplanting occurred during two seasons (summer and fall) using two transplant sizes (295 and 680 cm3) at seven montane meadow sites in Arizona. Survival was similar among species, but shoot numbers were greater for C. lanuginosa (12.7 shoots/wildling) compared with C. nebrascensis (5.5 shoots/wildling) and C. rostrata (7.9 shoots/wildling). Survival was significantly greater for the summer transplant season (55.1%) versus fall (24.1%). Survival and growth were greater for the larger transplant size (46.1% large vs. 33.0% small; 8.1 shoots/wildling large vs. 6.4 small). Wildling survival was related to depth to groundwater for each species. Survival was highest for C. lanuginosa (78.6%), C. nebrascensis (88.2%), and C. rostrata (64.3%) where the groundwater depth was ?48 to ?60, ?28 to ?47, and ?8 to ?27 cm, respectively. These results suggest that restoration will be most successful if transplanting occurs in summer, using large wildling transplants when under stressful conditions such as waterlogged or dry soils, and when species are planted at appropriate groundwater depths.  相似文献   

4.
Summary It has been shown in clonal perennial herbs that shoot natality decreases, and shoot mortality increases, in stands of increasing density. In a two-year garden experiment, we have tested Hutchings' (1979) hypothesis that these responses are the result of physiological integration, i.e. the exchange of resources and growth substances between shoots of a single clone. Dense monocultures of two rhizomatous graminoids, Brachypodium pinnatum and Carex flacca, were created that differed more than 10-fold in the density of clones (genets), but that had similar densities of shoots. A more effective shoot density control was expected in stands with the smaller clone densities (larger clones) due to more extensive clonal connections. Shoot turnover was evaluated by counting living and dead shoots at different times. In the summer of the second year, when shoot densities and stand structure were similar between treatments, shoot natality (the number of shoots born per plot) and shoot mortality (the number of shoots that died per plot) were usually unrelated to clone density in either species. If there was a significant treatment effect, it could be attributed to (small) differences in shoot density. Over the whole range of shoot densities, natality was negatively density-dependent. The number of shoots that died in a given growth period was proportional to the number of shoots present, suggesting that mortality rates were density independent. In Carex, however, there were some indications that mortality rate increased with increasing density. Our study confirms that clonal herbaceous species can effectively prevent an overproduction of shoots, but in contrast to Hutchings' (1979) propositions, we found no evidence that physiological integration may be the responsible mechanism. An alternative explanation for the observed patterns is proposed.  相似文献   

5.
Shoots of the monocotyledonous perennial Carex acutiformis were grown in open (28 shoots m−2) and dense stands (280 shoots m−2). For fully grown stands the distribution of relative PPFD and leaf nitrogen per unit leaf area over canopy depth was determined. Light response of photosynthesis was measured on leaf segments sampled at various heights in the stands. Relations between parameters of these curves and leaf nitrogen were investigated. Simulations showed that in the open stand daily canopy photosynthesis was not affected by nitrogen redistribution in the canopy. For the dense stand however, a uniform nitrogen distribution would lead to only 73% of the maximum net carbon gain by the stand under optimal nitrogen distribution. The actual canopy photosynthesis was only 7% less than this theoretical maximum; the actual nitrogen distribution of the dense stand clearly tended to the optimal distribution. The vertical pattern of the nitrogen distribution was to a large extent determined by the minimum leaf nitrogen content. The relatively high minimum leaf nitrogen content found for Carex leaves may perhaps be necessary to maintain the physiological function of the basal parts of the leaves.  相似文献   

6.
Bernd Schäppi 《Oecologia》1996,106(1):93-99
Leaf expansion, population dynamics and reproduction under elevated CO2 were studied for two dominant and four subdominant species in a high alpine grassland (2500 above sea level, Swiss Central Alps). Plots of alpine heath were exposed to 335 l l-1 and 680 l l-1 CO2 in open-top chambers over three growing seasons. Treatments also included natural and moderately improved mineral nutrient supply (40 kg N ha-1 year-1 in an NPK fertilizer mix). Seasonal dynamics of leaf expansion, which was studied for the dominant graminoid Carex curvula only, were not affected by elevated CO2 during two warm seasons or during a cool season. Improved nutrient supply increased both the expansion rate and the duration of leaf growth but elevated CO2 did not cause any further stimulation. Plant and tiller density (studied in all species) increased under elevated CO2 in the codominant Leontodon helveticus and the subdominant Trifolium alpinum, remained unchanged in two other minor species Poa alpina and Phyteuma globulariifolium, and decreased in Carex curvula. In Potentilla aurea elevated CO2 compensated for a natural decline in shoot number. By year 3 the number of fertile shoots in Leontodon and individual seed weight in Carex were slightly increased under elevated CO2, indicating CO2 effects on sexual reproduction in these two dominant species. The results suggest that the effects of elevated CO2 on the population dynamics of the species studied were not general, but species-specific and rather moderate effects. However, the reduction of tiller density in Carex curvula, in contrast to the increases observed in Leontodon helveticus and Trifolium alpinum, indicates that elevated CO2 may negatively affect the abundance of the species most characteristic of this alpine plant community.  相似文献   

7.
The effect of N supply on shoot and leaf lifespan was investigated in established stands of four herbaceous Carex species which differed in maximum dry matter production. These species were, in rank order of increasing maximum dry matter production (per unit ground area): Carex diandraC. rostrata. The observed patterns of shoot and leaf turnover were compared with data on leaf characteristics and nitrogen use efficiency indices of these species. There was no consistent difference in shoot production (number of shoots produced per unit ground area) between species with low production and those with high production: Carex diandra (low production) and C. lasiocarpa (high production) had high shoot production, while shoot production in c. rostrata (low production) and C. acutiformis (high production) was much lower. The rank order of the mean lifespan of shoots was: C. diandra. Thus, the lifespan of shoots increased with increasing maximum dry matter production of these Carex species. In all species, increased N supply led to a significant reduction in shoot lifespan. The reduction of shoot lifespans in response to enhanced N supply will result in increased nutrient turnover rates in these species. There was no consistent difference in the number of leaves produced per shoot between low-production and high-production species. C. diandra and C. lasiocarpa had relatively low leaf production, while C. rostrata and C. acutiformis had relatively high leaf production per shoot. Thus, this pattern is opposite to the pattern in shoot production. The rank order of the mean lifespan of leaves was: C. diandra. This implies that the high-production species had longer mean leaf lifespans than the low-production species. Mean leaf lifespan was not significantly affected by enhanced N supply, except in C. diandra, where leaf lifespan decreased in response to enhanced N supply. Shoot lifespans did not show any significant relation with the specific leaf area (SLA, leaf area per unit leaf mass) or the leaf area ratio (LAR, leaf area per unit plant mass) of the species under study. There was, however, a negative relation (r 2=0.71) with the nitrogen concentration in the leaves. Shoot lifespans were positively related (r 2=0.79) with whole-plant nitrogen use efficiency (NUE, dry matter production per unit N-loss) and with the mean residence time of nitrogen (MRT, the average time-span during which a unit of nitrogen is present in the plant) (r 2=0.78), but not with the nitrogen productivity (A, annual dry matter production per unit N in the plant). Leaf lifespan was positively related with the mean residence time of nitrogen in the plants (r 2–0.70). For all the other parameters, there were no significant relations with leaf lifespan. From these results we conclude that: (1) at the stand level, shoot and leaf lifespans are positively related with maximum dry matter production; and (2) shoot and leaf lifespan are important determinants of whole-plant nitrogen economy.  相似文献   

8.
The revegetation of sedge meadows has been problematic because natural recolonization does not occur under many circumstances and because planted propagules often fail to reestablish successfully. In this study, detached rhizomes of Carex lacustris Willd. and Carex stricta Lam. were transplanted in both fall (September) and spring (May) into three experimental wetlands to determine the effects of both planting season and hydrology on survival and establishment. Each experimental wetland had the same mean water depth across 5% slopes, but one had a constant water depth (0.5 m) throughout the growing season, another fell from a mean depth of 0.75 m to 0.25 m, and a third rose from a mean depth of 0.25 m to 0.75 m. Initial rhizome survival, shoot growth, and soil characteristics were recorded over 2 years. Neither planting proved successful (6.9% versus 0.5%) for C. stricta, a tussock-forming sedge. For C. lacustris, a sedge with spreading rhizomes, spring planting had greater rhizome survival (53.2% survival) than fall planting (0.7%). Since both species initiate new shoots in the fall, they are susceptible to transplant failure during this season. The highest survival rates (71–100%) and plant production (736.0 and 494.5 g/m2) for C. lacustris occurred near the water’s edge in both the constant and falling basins. In the rising basin, establishment and growth of this species was high at all water depths (71–96%; 399 g/m2). C. lacustris grew optimally at the same elevations where rhizome survival was greatest, suggesting that shoots are more sensitive to early-season than late-season water levels.  相似文献   

9.
Abstract

This study addresses the issue of heavy metal (HM) accumulation and distribution for three different plant species, Carex pilosa, Dentaria bulbifera, Galium odoratum, in Carpathian beech ecosystems. Data are presented on HM concentrations in forest understory vegetation and a preliminary insight into different HM allocation patterns is provided. Bioaccumulation factors (BCFs) and shoot/root ratios differed considerably among the species and between polluted and unpolluted regions. HMs were accumulated in forest plants as follows: Cu > Zn > Cd >Pb in unpolluted areas and Zn> Cd > Cu >Pb in polluted areas. Zn was preferentially distributed to roots and Cu to shoots. The distribution of Cd and Pb in different plant parts was specific in terms of the species-dependence. Cd and Pb levels in Carex pilosaand Galium odoratumwere more strictly controlled in the transfer zone of root-shoot, compared to Dentaria bulbifera.The highest BCFs were found in Carex pilosafor Cu (5.9) and in Dentaria bulbiferawas found the highest shoot/root ratio for Cd (3.1).  相似文献   

10.
Wet forest ecosystems in temperate regions have been heavily drained and logged, often with significant negative consequences for biodiversity in these habitats. Our research focused on population maintenance mechanisms of a declining wet forest sedge Carex loliacea L. We studied germination under different light regimes and seedling survival under different vegetation densities using an in situ removal experiment. For successful germination, seeds of C. loliacea need light; germination in reduced light conditions is depressed. The seeds of C. loliacea are able to accumulate a seed bank and exhibit seasonal dormancy cycles. Survival of seedlings strongly depends on competition with other plant species. Our results imply that changes in habitat conditions (draining, forest cutting) affect the successful generative reproduction of C. loliacea primarily via a change in light conditions, which is a strong factor both at the stage of germination and seedling growth. However, adult plants are able to persist over a much broader range of habitat conditions without detectable vitality loss.  相似文献   

11.
The fine-scale spatial distribution of leaves and shoots of Brachypodium pinnatum and Carex flacca, two rhizomatous graminoids, was investigated in two chalk grasslands in South Limburg (The Netherlands). The objective was to examine whether leaves and shoots of Brachypodium, a dominant species, had a regular distribution on a small scale, as has been suggested for other clonal species that form high-density stands. Patterns were compared to Carex, which is never found to be as abundant as Brachypodium.The number of shoots and leaf contacts were counted in small quadrats, grouped in a grid. Using Moran's I analysis for autocorrelation, it appeared that leaves and shoots of both species were arranged in clumps, and that these clumps were randomly distributed across the soil surface. Shoot clumps in Carex were smaller in diameter and not as pronounced as those in Brachypodium.In most cases, patterns of leaves and shoots were positively correlated, indicating that leaves were predominantly positioned above and around the groups of quadrats where the shoots were attached. However, in dense stands of Brachypodium the positions of leaf clumps were not correlated to those of shoot clumps. This is a result of the tall growth form of this species and its high shoot densities, and it is suggested that this will be a characteristic of any species that dominates a dense stand.  相似文献   

12.
van der Werf, A., Kooijman, A., Welschen, R. and Lambers, H. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. - Physiol. Plant. 72: 483–491. The respiratory characteristics of the roots of Carex diandra Schrank and Carex acutiformis Ehrh. were investigated. The aims were, firstly to determine the respiratory energy costs for the maintenance of root biomass, for root growth and for ion uptake, and secondly to explain the higher rate of root respiration and ATP production in C. diandra. The three respiratory energy components were derived from a multiple regression analysis, using the relative growth rate and the net rate of nitrate uptake as independent variables and the rate of ATP production as a dependent variable. Although the rate of root respiration and ATP production was significantly higher in C. diandra than in C. acutiformis, the two species showed no significant difference in their rate of ATP production for the maintenance of biomass, in the respiratory energy coefficient for growth (the amount of ATP production per unit of biomass produced) and the respiratory energy coefficient for ion uptake (amount of ATP production per unit of ions absorbed). It is concluded that the higher rate of root respiration of C. diandra is caused by a higher rate of nitrate uptake. At relatively high rates of growth and nitrate uptake, the contribution of the rate of ATP production for ion uptake to the total rate of ATP production amounted to 38 and 25% for C. diandra and C. acutiformis, respectively. At this growth rate, the respiratory energy production for growth contributed 37 and 50%, respectively, to the total rate of ATP production. The relative contribution of the rate of ATP production for the maintenance of biomass increased from 25 to 70% with increasing plant age for both species. The results suggest that ion uptake is one of the major sinks for respiratory energy in roots. These experimentally derived values for the rate of ATP production for the maintenance of biomass, the respiratory energy coefficient for growth and the respiratory energy coefficient for ion uptake are discussed in relation to other experimentally and theoretically derived values.  相似文献   

13.
Several types of tussock formed byCarex thunbergii var.appendiculata were compared with respect to the growth pattern of their rhizomes at various developmental stages at Benten Marsh in Yufutsu Mire, Hokkaido, Japan. The rhizomes were classified into three types based on their function: 1, very short rhizomes; 2, intermediate-length rhizomes which grow upwards to raise the shoot base; 3, long rhizomes which grow horizontaly to spread the plant. The extent of development of the tussock and the total length of rhizomes per shoot was inversely related with the number of Type 3 rhizomes, and positively related with Types 1 and 2 rhizomes. The tussock was made of dead roots, dead rhizomes and much litter, which provided a substitute for soil for the rhizomes and absorbing roots. The growth conditions of theCarex changed from aerobic and eutrophic to anoxic and oligotrophic with tussock development. It is concluded that the tussock is adaptive to anoxic conditions.  相似文献   

14.
 A subset of populations of the European taxa of Carex sect. Digitatae, including Carex digitata, C. pallens, C. ornithopoda, C. pediformis ssp. rhizodes and C. humilis have been investigated for allozyme variation. The (presumably) distantly related C. pendula was used as a reference taxon. Carex digitata, C. pallens and C. ornithopoda on the one hand, and C. humilis and C. pediformis on the other, shared the majority of the alleles. Cluster analyses based on genetic distances grouped populations of C. digitata and C. ornithopoda in a mixed subcluster whereas all populations of C. pallens formed a subcluster distinct from the digitata/ornithopoda cluster. This in spite of the fact that C. ornithopoda is morphologically clearly distinct from C. digitata whereas C. pallens is barely distinguishable from the latter. Carex pediformis and C. humilis appeared not more genetically similar to C. digitata than to the reference taxon. It is concluded that 1) C. digitata, C. pallens and C. ornithopoda are closely related and most probably forms a monophyletic group, 2) C. pallens is a genetically distinct species, 3) C. pediformis and C. humilis are not closely related to the rest of C. sect. Digitatae, 4) C. pediformis and C. humilis are relatively closely related, 5) introgression do occur between the investigated species but not to such an extent that it can explain major geographic patterns of variation in C. digitata. Received December 21, 2001; accepted November 14, 2002 Published online: March 24, 2003  相似文献   

15.
Carex curvula is a very slow-growing rhizomatous sedge that forms extensive stands in the European an alpine belt. The recruitment of sexual progeny is extremely rare and propagation occurs predominantly through clonal growth. The randomly amplified polymorphic DNA (RAPD) technique was used to analyse clonal structure in a small patch (2.0x0.4 m sampling transect plus some additional samples) of a high-alpine population of the species. Amplification of the DNA of 116 tiller samples from the patch with eight ten-base primers yielded a total of 95 bands, of which 73 were polymorphic. Based on the RAPD amplification profiles a total of 15 multilocus genotypes (putative clones) were identified. Due to the high number of polymorphic loci the number of genetic markers delineating individual clones was high (range: 16–39 markers) which suggests that our estimates of clonal diversity are precise. More than half of the sampled tillers were identified as belonging to a single clone which formed a relatively homogeneous disc intermingling with other clones only at its margin. Based on the maximum diameter of this large clone of more than 7000 tillers and estimates of annual expansion growth of rhizomes (0.4 mm year-1), the age of the clone was calculated to be around 2000 years. This demonstrates that clones of C. curvula may persist on a single spot over long periods with quite diverse alpine climates ranging from rather mild periods in the Middle Ages to cool periods during the so called little ice age in the last century. Our results suggest caution with plant migration scenarios based on shifting isotherms where late-successional clonal species, which dominate the alpine vegetation all over the world, are concerned.  相似文献   

16.
《Plant Ecology & Diversity》2013,6(5-6):443-451
Background: Variable habitat conditions contribute to morphological variability that plays a substantial part in evolution of plants. Understanding the extent of phenotypic plasticity has important implication for assigning individuals to taxa.

Aims: I analysed morphological variability among populations within species of the Carex flava group and tested to what extent morphological variability was associated with habitat conditions.

Methods: A total of 571 specimens from 20 populations of four species from the C. flava complex were sampled in Poland and tested by Discriminant Function Analysis (DFA). The relationship between morphological characters and habitat factors was explored by means of the redundancy analysis (RDA).

Results: Variability of the generative and vegetative traits was fairly similar in Carex lepidocarpa, C. flava and Carex demissa, while it was somewhat higher in Carex viridula. The morphological traits were mostly related to soil organic matter content, calcium and carbonate, as well as to habitat fertility (C:N ratio), elevation and habitat disturbance. The results obtained do not support the separation of C. viridula var. pulchella from C. viridula var. viridula.

Conclusions: Phenotypic variability in the species of the C. flava complex is related to habitat conditions and this can lead to the differentiation of morphotypes within species.  相似文献   

17.
木里苔草作为一种典型的高原湿地植被景观,其生理生态特征受到水深梯度变化的显著影响。选取若尔盖高原沼泽湿地典型植物木里苔草(Carex muliensis)作为研究对象,通过模拟实验,研究了其在-5cm、-3.5cm、0cm、8cm和22cm水深梯度下株高、叶长和叶宽的生长特征及增长量的变化规律,以及叶绿素、叶氮和生物量的变化趋势。结果表明:木里苔草在水深为8cm时呈现最大的株高、叶长和叶宽,其中以株高对水深梯度的响应最为显著,叶宽对水深梯度的响应并不明显,适度干旱或淹水都对木里苔草生长起到促进作用。此外,叶绿素、叶氮含量和生物量也都在8cm水位下达到最大。通过此实验,可以阐明木里苔草生长对水深条件的响应,为若尔盖湿地保护和恢复提供数据支撑与实践依据。  相似文献   

18.
A micro‐morphological analysis of leaf epidermis (adaxial and abaxial sides) of fifteen taxa of Carex section Phacocystis was carried out using light microscopy and scanning electron microscopy (SEM). Three taxa were epistomatic (C. nigra var. nigra, C.nigra var. juncea and C. subspathacea), seven taxa were hypostomatic (C. acuta, C. bigelowii ssp. bigelowii, C. bigelowii ssp. rigida, C. cespitosa, C. elata, C. lyngbyei and C. paleacea) and five amphistomatic (C. aquatilis, Chalophila, C. rufina, C. stans and C. trinervis). Epidermal modifications such as prickles were present in many species. The micro‐morphological leaf characters of the investigated species were found to be important for distinguishing individual taxa but not for subsectional classification.  相似文献   

19.
Initiation of new shoots originating from basal meristems of older shoots of Carex rostrata was studied in relation to the internal carbon/nitrogen balance. In a greenhouse experiment, individual shoots with a vigorous formation of a new shoot contained the highest concentrations of free amino acids (FAA) and the lowest concentrations of total nonstructural carbohydrates (TNC), resulting in a low TNC/FAA ratio. Thus shoots with high availability of nitrogenous compounds in relation to carbohydrates started growing a new shoot. The results suggest that TNC/FAA ratios could affect shoot densities. Field measurements supported this view: TNC/FAA ratios were lower in a mesotrophic site with a high density of shoots than in an oligotrophic site with a low density of shoots. Compared with roots, TNC/FAA ratios of shoots seemed to be more decisive both in the greenhouse experiment and in the field. In the greenhouse experiment, initiation of new shoots was measured in fragmented shoots of Carex having no intraclonal connections. Even if physiological integration was lacking due to fragmentation, shoot initiation was efficiently controlled in relation to the internal carbon/nitrogen balance. Received: 14 May 1998 / Accepted: 25 August 1999  相似文献   

20.
Aysegul Akpinar 《Phyton》2023,92(7):2197-2210
Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species. Among the Carex species, some of them are known to be glycophytes, while others are halophytes. Carex morrowii Boott (Cyperaceae) is resistant to trample through their root structure and has an essential ornamental value in the landscape with their leaves. However, no information was found about the level of salinity tolerance/ sensitivity of the Carex morrowii among these species. In the present study, changes in trace element contents (Na, K, Ca, Cu, Mn, Mg, Ni, Fe, P, Zn, and N) and their transport from roots to leaves, osmotic regulation, alterations in chlorophyll and carotenoid contents, nitrogen assimilation (nitrate reductase activity; NRA) and total soluble protein content in both roots and leaves of Carex morrowii under different salinity concentrations (50 mM, 100 mM, 200 mM and 300 mM NaCl) were examined in detail. Our study provides the first detailed data concerning the responses of leaves and roots and the determination of the level of salinity tolerance/sensitivity of the Carex morrowii. The K+ /Na+ ratio was preserved up to 200 mM NaCl, and accordingly, the element uptake and transport ratios showed that they could control moderate NaCl levels. Ca homeostasis that is maintained even in 200 mM NaCl concentration can be effective in maintaining the structural integrity and selective permeability of the cell membranes, while 300 mM NaCl concentration caused decreased photosynthetic pigments, and deterioration in element content and compartmentation. Moreover, these data suggest that plant parts of Carex morrowii respond differently against varied levels of salinity stress. Although the decrease in NR activity at 200 mM and 300 mM NaCl concentrations in the leaves, NR activity was maintained in the roots. Consequently, Carex morrowii is moderately tolerant to salinity and the carotenoid content and osmotic regulation of Carex morrowii appears to be instrumental in its survival at different salinity levels. Especially the roots of Carex morrowii have a remarkable role in salinity tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号