首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohta N  Newton A 《Journal of bacteriology》2003,185(15):4424-4431
Histidine kinases DivJ and PleC initiate signal transduction pathways that regulate an early cell division cycle step and the gain of motility later in the Caulobacter crescentus cell cycle, respectively. The essential single-domain response regulator DivK functions downstream of these kinases to catalyze phosphotransfer from DivJ and PleC. We have used a yeast two-hybrid screen to investigate the molecular basis of DivJ and PleC interaction with DivK and to identify other His-Asp signal transduction proteins that interact with DivK. The only His-Asp proteins identified in the two-hybrid screen were five members of the histidine kinase superfamily. The finding that most of the kinase clones isolated correspond to either DivJ or PleC supports the previous conclusion that DivJ and PleC are cognate DivK kinases. A 66-amino-acid sequence common to all cloned DivJ and PleC fragments contains the conserved helix 1, helix 2 sequence that forms a four-helix bundle in histidine kinases required for dimerization, autophosphorylation and phosphotransfer. We present results that indicate that the four-helix bundle subdomain is not only necessary for binding of the response regulator but also sufficient for in vivo recognition specificity between DivK and its cognate histidine kinases. The other three kinases identified in this study correspond to DivL, an essential tyrosine kinase belonging to the same kinase subfamily as DivJ and PleC, and the two previously uncharacterized, soluble histidine kinases CckN and CckO. We discuss the significance of these results as they relate to kinase response regulator recognition specificity and the fidelity of phosphotransfer in signal transduction pathways.  相似文献   

2.
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen‐fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.  相似文献   

3.
G B Hecht  T Lane  N Ohta  J M Sommer    A Newton 《The EMBO journal》1995,14(16):3915-3924
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions. Here we show that in Caulobacter crescentus these systems also play essential roles in the regulation of polar morphogenesis and cell division. Previous studies have implicated histidine kinase genes pleC and divJ in the regulation of these developmental events. We now report that divK encodes an essential, cell cycle-regulated homolog of the CheY/Spo0F subfamily and present evidence that this protein is a cognate response regulator of the histidine kinase PleC. The purified kinase domain of PleC, like that of DivJ, can serve as an efficient phosphodonor to DivK and as a phospho-DivK phosphatase. Based on these and earlier genetic results we propose that PleC and DivK are members of a signal transduction pathway that couples motility and stalk formation to completion of a late cell division cycle event. Gene disruption experiments and the filamentous phenotype of the conditional divK341 mutant reveal that DivK also functions in an essential signal transduction pathway required for cell division, apparently in response to another histidine kinase. We suggest that phosphotransfer mediated by these two-component signal transduction systems may represent a general mechanism regulating cell differentiation and cell division in response to successive cell cycle checkpoints.  相似文献   

4.
The bacterium C. crescentus coordinates cellular differentiation and cell cycle progression via a network of signal transduction proteins. Here, we demonstrate that the antagonistic DivJ and PleC histidine kinases that regulate polar differentiation are differentially localized as a function of the cell cycle. The DivJ kinase localizes to the stalked pole in response to a signal at the G1-to-S transition, while the PleC kinase is localized to the flagellar pole in swarmer and predivisional cells but is dispersed throughout the cell in the stalked cell. PleC, which is required for DivJ localization, may provide the cue at the G1-to-S transition that directs the polar positioning of DivJ. The dynamic positioning of signal transduction proteins may contribute to the regulation of polar differentiation at specific times during the bacterial cell cycle.  相似文献   

5.
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes.  相似文献   

6.
Paul R  Jaeger T  Abel S  Wiederkehr I  Folcher M  Biondi EG  Laub MT  Jenal U 《Cell》2008,133(3):452-461
The two-component phosphorylation network is of critical importance for bacterial growth and physiology. Here, we address plasticity and interconnection of distinct signal transduction pathways within this network. In Caulobacter crescentus antagonistic activities of the PleC phosphatase and DivJ kinase localized at opposite cell poles control the phosphorylation state and subcellular localization of the cell fate determinator protein DivK. We show that DivK functions as an allosteric regulator that switches PleC from a phosphatase into an autokinase state and thereby mediates a cyclic di-GMP-dependent morphogenetic program. Through allosteric activation of the DivJ autokinase, DivK also stimulates its own phosphorylation and polar localization. These data suggest that DivK is the central effector of an integrated circuit that operates via spatially organized feedback loops to control asymmetry and cell fate determination in C. crescentus. Thus, single domain response regulators can facilitate crosstalk, feedback control, and long-range communication among members of the two-component network.  相似文献   

7.
Many organisms use polar localization of signalling proteins to control developmental events in response to completion of asymmetric cell division. Asymmetric division was recently reported for Brucella abortus, a class III facultative intracellular pathogen generating two sibling cells of slightly different size. Here we characterize PdhS, a cytoplasmic histidine kinase essential for B. abortus viability and homologous to the asymmetrically distributed PleC and DivJ histidine kinases from Caulobacter crescentus. PdhS is localized at the old pole of the large cell, and after division and growth, the small cell acquires PdhS at its old pole. PdhS may therefore be considered as a differentiation marker as it labels the old pole of the large cell. Moreover, PdhS colocalizes with its paired response regulator DivK. Finally, PdhS is able to localize at one pole in other alpha-proteobacteria, suggesting that a polar structure associating PdhS with one pole is conserved in these bacteria. We propose that a differentiation event takes place after the completion of cytokinesis in asymmetrically dividing alpha-proteobacteria. Altogether, these data suggest that prokaryotic differentiation may be much more widespread than expected.  相似文献   

8.
For successful generation of different cell types by asymmetric cell division, cell differentiation should be initiated only after completion of division. Here, we describe a control mechanism by which Caulobacter couples the initiation of a developmental program to the completion of cytokinesis. Genetic evidence indicates that localization of the signaling protein DivK at the flagellated pole prevents premature initiation of development. Photobleaching and FRET experiments show that polar localization of DivK is dynamic with rapid pole-to-pole shuttling of diffusible DivK generated by the localized activities of PleC phosphatase and DivJ kinase at opposite poles. This shuttling is interrupted upon completion of cytokinesis by the segregation of PleC and DivJ to different daughter cells, resulting in disruption of DivK localization at the flagellated pole and subsequent initiation of development in the flagellated progeny. Thus, dynamic polar localization of a diffusible protein provides a control mechanism that monitors cytokinesis to regulate development.  相似文献   

9.
The Caulobacter crescentus sensor kinase DivJ is required for an early cell division step and localizes at the base of the newly formed stalk during the G1-to-S-phase transition when the protein is synthesized. To identify sequences within DivJ that are required for polar localization, we examined the ability of mutagenized DivJ sequences to direct localization of the green fluorescent protein. The effects of overlapping C-terminal deletions of DivJ established that the N-terminal 326 residues, which do not contain the kinase catalytic domain, are sufficient for polar localization of the fusion protein. Internal deletions mapped a shorter sequence between residues 251 and 312 of the cytoplasmic linker that are required for efficient localization of this sensor kinase. PleC kinase mutants, which are blocked in the swarmer-to-stalked-cell transition and form flagellated, nonmotile cells, also fail to localize DivJ. To dissect the cellular factors involved in establishing subcellular polarity, we have examined DivJ localization in a pleC mutant suppressed by the sokA301 allele of ctrA and in a pleD mutant, both of which display a supermotile, stalkless phenotype. The observation that these Mot(+) strains localize DivJ to a single cell pole indicate that localization may be closely coupled to the gain of motility and that normal stalk formation is not required. We have also observed, however, that filamentous parC mutant cells, which are defective in DNA segregation and the completion of cell separation, are motile and still fail to localize DivJ to the new cell pole. These results suggest that formation of new sites for DivJ localization depends on events associated with the completion of cell separation as well as the gain of motility. Analysis of PleC and PleD mutants also provides insights into the function of the His-Asp proteins in cell cycle regulation. Thus, the ability of the sokA301 allele of ctrA to bypass the nonmotile phenotype of the pleC null mutation provides evidence that the PleC kinase controls cell motility by initiating a signal transduction pathway regulating activity of the global response regulator CtrA. Analysis of the pleD mutant cell cycle demonstrates that disruption of the swarmer-to-stalked-cell developmental sequence does not affect the asymmetric organization of the Caulobacter cell cycle.  相似文献   

10.
11.
The onset of motility late in the Caulobacter crescentus cell cycle depends on a signal transduction pathway mediated by the histidine kinase PleC and response regulator DivK. We now show that pleD, whose function is required for the subsequent loss of motility and stalk formation by the motile swarmer cell, encodes a 454-residue protein with tandem N-terminal response regulator domains D1 and D2 and a novel C-terminal GGDEF domain. The identification of pleD301, a semidominant suppressor of the pleC Mot phenotype, as a mutation predicted to result in a D-53-->G change in the D1 domain supports a role for phosphorylation in the PleD regulator. Disruptions constructed in the pleD open reading frame demonstrated that the gene is not essential and that the pleC phenotype can also be suppressed by a recessive, loss-of-function mutation. These results suggest that PleD is part of a signal transduction pathway controlling stalked-cell differentiation early in the C. crescentus cell cycle.  相似文献   

12.
Cell-fate asymmetry in the predivisional cell of Caulobacter crescentus requires that the regulatory protein DivL localizes to the new pole of the cell where it up-regulates CckA kinase, resulting in a gradient of CtrA~P across the cell. In the preceding stage of the cell cycle (the “stalked” cell), DivL is localized uniformly along the cell membrane and maintained in an inactive form by DivK~P. It is unclear how DivL overcomes inhibition by DivK~P in the predivisional cell simply by changing its location to the new pole. It has been suggested that co-localization of DivL with PleC phosphatase at the new pole is essential to DivL’s activity there. However, there are contrasting views on whether the bifunctional enzyme, PleC, acts as a kinase or phosphatase at the new pole. To explore these ambiguities, we formulated a mathematical model of the spatiotemporal distributions of DivL, PleC and associated proteins (DivJ, DivK, CckA, and CtrA) during the asymmetric division cycle of a Caulobacter cell. By varying localization profiles of DivL and PleC in our model, we show how the physiologically observed spatial distributions of these proteins are essential for the transition from a stalked cell to a predivisional cell. Our simulations suggest that PleC is a kinase in predivisional cells, and that, by sequestering DivK~P, the kinase form of PleC enables DivL to be reactivated at the new pole. Hence, co-localization of PleC kinase and DivL is essential to establishing cellular asymmetry. Our simulations reproduce the experimentally observed spatial distribution and phosphorylation status of CtrA in wild-type and mutant cells. Based on the model, we explore novel combinations of mutant alleles, making predictions that can be tested experimentally.  相似文献   

13.
Several members of the two-component signal transduction family have been implicated in the control of polar development in Caulobacter crescentus: PleC and DivJ, two polarly localized histidine sensor kinases; and the response regulators DivK and PleD. The PleD protein was shown previously to be required during the swarmer-to-stalked cell transition for flagellar ejection and efficient stalk biogenesis. Here, we present data indicating that PleD also controls the onset of motility and a cell density switch immediately preceding cell division. Constitutively active alleles of pleD or wspR, an orthologue from Pseudomonas fluorescens, almost completely suppressed C. crescentus motility and inhibited the increase in swarmer cell density during cell differentiation. The observation that these alleles also had a dominant-negative effect on motility in a pleC divJ and a pleC divK mutant background indicated that PleD is located downstream of the other components in the signal transduction cascade, which controls the activity of the flagellar motor. In addition, the presence of a constitutive pleD or wspR allele resulted in a doubling of the average stalk length. Together, this is consistent with a model in which the active form of PleD, PleD approximately P, negatively controls aspects of differentiation in the late predivisional cell, whereas it acts positively on polar development during the swarmer-to-stalked cell transition. In agreement with such a model, we found that DivJ, which localizes to the stalked pole during cell differentiation, positively controlled the in vivo phosphorylation status of PleD, and the swarmer pole-specific PleC kinase modulated this status in a negative manner. Furthermore, domain switch experiments demonstrated that the WspR GGDEF output domain from P. fluorescens is active in C. crescentus, favouring a more general function for this novel signalling domain over a specific role such as DNA or protein interaction. Possible roles for PleD and its C-terminal output domain in modulating the polar cell surface of C. crescentus are discussed.  相似文献   

14.
The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.  相似文献   

15.
DivK is an essential response regulator in the Gram-negative bacterium Caulobacter crescentus and functions in a complex phosphorelay system that precisely controls the sequence of developmental events during the cell division cycle. Structure determinations of this single domain response regulator at different pH values demonstrated that the five-stranded alpha/beta fold of the DivK protein is fully defined only at acidic pH. The crystal structures of the apoprotein and of metal-bound DivK complexes at higher pH values revealed a synergistic pH- and cation binding-induced flexibility of the beta4-alpha4 loop and of the alpha4 helix. This motion increases the solvent accessibility of the single cysteine residue in the protein. Solution state studies demonstrated a 200-fold pH-dependent increase in the affinity of manganese for the protein between pH 6.0 and 8.5 that seems to involve deprotonation of an acido-basic couple. Taken together, these results suggest that flexibility of critical regions of the protein, ionization of the cysteine 99 residue and improved K(D) values for the catalytic metal ion are coupled events. We propose that the molecular events observed in the isolated protein may be required for DivK activation and that they may be achieved in vivo through the specific protein-protein interactions between the response regulator and its cognate kinases.  相似文献   

16.
Regulation of polar development and cell division in Caulobacter crescentus relies on the dynamic localization of several proteins to cell poles at specific stages of the cell cycle. The polar organelle development protein, PodJ, is required for the synthesis of the adhesive holdfast and pili. Here we show the cell cycle localization of PodJ and describe a novel role for this protein in controlling the dynamic localization of the developmental regulator PleC. In swarmer cells, a short form of PodJ is localized at the flagellated pole. Upon differentiation of the swarmer cell into a stalked cell, full length PodJ is synthesized and localizes to the pole opposite the stalk. In late predivisional cells, full length PodJ is processed into a short form which remains localized at the flagellar pole after cell division and is degraded during swarmer to stalked cell differentiation. Polar localization of the developmental regulator PleC requires the presence of PodJ. In contrast, the polar localization of PodJ is not dependent on the presence of PleC. These results indicate that PodJ is an important determinant for the localization of a major regulator of cell differentiation. Thus, PodJ acts directly or indirectly to target PleC to the incipient swarmer pole, to establish the cellular asymmetry that leads to the synthesis of holdfasts and pili at their proper subcellular location.  相似文献   

17.
In two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP. This signal transduction system allows Salmonella to withstand environmental Mg2+ limitation by triggering gene expression that is vital throughout the infective cycle in the host. Using resonant mirror biosensor technology, we calculated the kinetic and equilibrium binding constants and determined that the His-phosphotransfer domain is essential for the PhoQ specific recognition and interaction with PhoP. Additionally, we show the role of this domain in the bimolecular transphosphorylation and provide evidence that this region undergoes dimerization.  相似文献   

18.
Jacobs C  Domian IJ  Maddock JR  Shapiro L 《Cell》1999,97(1):111-120
The master CtrA response regulator functions in Caulobacter to repress replication initiation in different phases of the cell cycle. Here, we identify an essential histidine kinase, CckA, that is responsible for CtrA activation by phosphorylation. Although CckA is present throughout the cell cycle, it moves to a cell pole in S phase, and upon cell division it disperses. Removal of the membrane-spanning region of CckA results in loss of polar localization and cell death. We propose that polar CckA functions to activate CtrA just after the initiation of DNA replication, thereby preventing premature reinitiations of chromosome replication. Thus, dynamic changes in cellular location of critical signal proteins provide a novel mechanism for the control of the prokaryote cell cycle.  相似文献   

19.
During the Caulobacter life cycle, the timing of DNA replication, cell division and development is precisely coordinated. Recent work has begun to unravel the complex regulatory networks that couple these processes. A key aspect of these regulatory networks is the dynamic localization of multiple histidine protein kinases that control a master response regulator, thus driving downstream pathways.  相似文献   

20.
To address the growing need for new antimicrobial agents, we explored whether inhibition of bacterial signaling machinery could inhibit bacterial growth. Because bacteria rely on two-component signaling systems to respond to environmental changes, and because these systems are both highly conserved and mediated by histidine kinases, inhibiting histidine kinases may provide broad spectrum antimicrobial activity. The histidine kinase ATP binding domain is conserved with the ATPase domain of eukaryotic Hsp90 molecular chaperones. To find a chemical scaffold for compounds that target histidine kinases, we leveraged this conservation. We screened ATP competitive Hsp90 inhibitors against CckA, an essential histidine kinase in Caulobacter crescentus that controls cell growth, and showed that the diaryl pyrazole is a promising scaffold for histidine kinase inhibition. We synthesized a panel of derivatives and found that they inhibit the histidine kinases C. crescentus CckA and Salmonella PhoQ but not C. crescentus DivJ; and they inhibit bacterial growth in both Gram-negative and Gram-positive bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号